scholarly journals Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error

Sensors ◽  
2011 ◽  
Vol 11 (10) ◽  
pp. 9989-10009 ◽  
Author(s):  
Prasan Kumar Sahoo ◽  
I-Shyan Hwang
Author(s):  
Santosh Ashokrao Darade ◽  
M. Akkalakshmi

The localization of underwater sensors is the most crucial task in underwater wireless sensor networks (UWSNs). The sensors, which are situated under the water, sense data from the environment, and sensed data is transmitted to the monitoring station. Although the monitoring station receives the sensed data, the data is meaningless without knowing the exact position of the sensor. Localization is the major issue in UWSN to be resolved. There are several localization algorithms available for terrestrial wireless sensor networks (WSN), but there are comparatively few localization algorithms available for UWSNs. An improved range-based localization method is introduced in this paper to discover localization issue. To evaluate the location of the target sensors, localization error is further to be reduced. The localization error is reduced by applying the whale optimization algorithm (WOA) in this technique. Simulation results demonstrate that performance metrics of the proposed approach outperform the existing work in terms of localization error and localization coverage.


2020 ◽  
Vol 14 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Amanpreet Kaur ◽  
Padam Kumar ◽  
Govind P. Gupta

Localization problem has gained a significant attention in the field of wireless sensor networks in order to support location-based services or information such as supporting geographic routing protocols, tracking events, targets, and providing security protection techniques. A number of variants of DV-Hop-based localization algorithms have been proposed and their performance is measured in terms of localization error. In all these algorithms, while determining the location of a non-anchor node, all the anchor nodes are taken into consideration. However, if only the anchors close to the node are considered, it will be possible to reduce the localization error significantly. This paper explores the effect of the close anchors in the performance of the DV-Hop-based localization algorithms and an improvement is proposed by considering only the closest anchors. The simulation results show that considering closest anchors for estimation of the location reduces localization error significantly as compared to considering all the anchors.


Author(s):  
Shakila R. ◽  
B. Paramasivan

The localization of underwater sensors is the most crucial task in underwater wireless sensor networks (UWSNs). The sensors which are situated under the water sense data from the environment and transmit to the monitoring station. Although the monitoring station receives the data, it is meaningless without knowing the exact position of the sensor. Localization is the major issue in UWSN to be resolved. There are several localization algorithms available for terrestrial wireless sensor networks (WSN) but there are comparatively few localization algorithms are available for UWSNs. An improved range-based localization method is introduced in this article to discover localization issue. To evaluate the location of the target sensors, the localization error is further reduced. The localization error is reduced by applying the Whale Optimization Algorithm (WOA) in this technique. Simulation results demonstrate that performance metrics of the proposed approach outperforms that of the existing work in terms of localization error and localization coverage.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4152
Author(s):  
Sana Messous ◽  
Hend Liouane ◽  
Omar Cheikhrouhou ◽  
Habib Hamam

As localization represents the main backbone of several wireless sensor networks applications, several localization algorithms have been proposed in the literature. There is a growing interest in the multi-hop localization algorithms as they permit the localization of sensor nodes even if they are several hops away from anchor nodes. One of the most famous localization algorithms is the Distance Vector Hop (DV-Hop). Aiming to minimize the large localization error in the original DV-Hop algorithm, we propose an improved DV-Hop algorithm in this paper. The distance between unknown nodes and anchors is estimated using the received signal strength indication (RSSI) and the polynomial approximation. Moreover, the proposed algorithm uses a recursive computation of the localization process to improve the accuracy of position estimation. Experimental results show that the proposed localization technique minimizes the localization error and improves the localization accuracy.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Author(s):  
VINOD KUMAR ◽  
SATYENDRA YADAV ◽  
ASHUTOSH KUMAR SINGH

The most fundamental problem of wireless sensor networks is localization (finding the geographical location of the sensors). Most of the localization algorithms proposed for sensor networks are based on Sequential Monte Carlo (SMC) method. To achieve high accuracy in localization it requires high seed node density and it also suffers from low sampling efficiency. There are some papers which solves this problems but they are not energy efficient. Another approach The Bounding Box method was used to reduce the scope of searching the candidate samples and thus reduces the time for finding the set of valid samples. In this paper we propose an energy efficient approach which will further reduce the scope of searching the candidate samples, so now we can remove the invalid samples from the sample space and we can introduce more valid samples to improve the localization accuracy. We will consider the direction of movement of the valid samples, so that we can predict the next position of the samples more accurately, hence we can achieve high localization accuracy.


Author(s):  
Dan Pescaru ◽  
Daniel-Ioan Curiac

This chapter presents the main challenges in developing complex systems built around the core concept of Video-Based Wireless Sensor Networks. It summarizes some innovative solutions proposed in scientific literature on this field. Besides discussion on various issues related to such systems, the authors focus on two crucial aspects: video data processing and data exchange. A special attention is paid to localization algorithms in case of random deployment of nodes having no specific localization hardware installed. Solutions for data exchange are presented by highlighting the data compression and communication efficiency in terms of energy saving. In the end, some open research topics related with Video-Based Wireless Sensor Networks are identified and explained.


Sign in / Sign up

Export Citation Format

Share Document