Extensive Literature Survey on Load Balancing in Software-Defined Networking

Author(s):  
Santosh Ashokrao Darade ◽  
M. Akkalakshmi

The localization of underwater sensors is the most crucial task in underwater wireless sensor networks (UWSNs). The sensors, which are situated under the water, sense data from the environment, and sensed data is transmitted to the monitoring station. Although the monitoring station receives the sensed data, the data is meaningless without knowing the exact position of the sensor. Localization is the major issue in UWSN to be resolved. There are several localization algorithms available for terrestrial wireless sensor networks (WSN), but there are comparatively few localization algorithms available for UWSNs. An improved range-based localization method is introduced in this paper to discover localization issue. To evaluate the location of the target sensors, localization error is further to be reduced. The localization error is reduced by applying the whale optimization algorithm (WOA) in this technique. Simulation results demonstrate that performance metrics of the proposed approach outperform the existing work in terms of localization error and localization coverage.

Author(s):  
Shakila R. ◽  
B. Paramasivan

The localization of underwater sensors is the most crucial task in underwater wireless sensor networks (UWSNs). The sensors which are situated under the water sense data from the environment and transmit to the monitoring station. Although the monitoring station receives the data, it is meaningless without knowing the exact position of the sensor. Localization is the major issue in UWSN to be resolved. There are several localization algorithms available for terrestrial wireless sensor networks (WSN) but there are comparatively few localization algorithms are available for UWSNs. An improved range-based localization method is introduced in this article to discover localization issue. To evaluate the location of the target sensors, the localization error is further reduced. The localization error is reduced by applying the Whale Optimization Algorithm (WOA) in this technique. Simulation results demonstrate that performance metrics of the proposed approach outperforms that of the existing work in terms of localization error and localization coverage.


2020 ◽  
Vol 14 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Amanpreet Kaur ◽  
Padam Kumar ◽  
Govind P. Gupta

Localization problem has gained a significant attention in the field of wireless sensor networks in order to support location-based services or information such as supporting geographic routing protocols, tracking events, targets, and providing security protection techniques. A number of variants of DV-Hop-based localization algorithms have been proposed and their performance is measured in terms of localization error. In all these algorithms, while determining the location of a non-anchor node, all the anchor nodes are taken into consideration. However, if only the anchors close to the node are considered, it will be possible to reduce the localization error significantly. This paper explores the effect of the close anchors in the performance of the DV-Hop-based localization algorithms and an improvement is proposed by considering only the closest anchors. The simulation results show that considering closest anchors for estimation of the location reduces localization error significantly as compared to considering all the anchors.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4152
Author(s):  
Sana Messous ◽  
Hend Liouane ◽  
Omar Cheikhrouhou ◽  
Habib Hamam

As localization represents the main backbone of several wireless sensor networks applications, several localization algorithms have been proposed in the literature. There is a growing interest in the multi-hop localization algorithms as they permit the localization of sensor nodes even if they are several hops away from anchor nodes. One of the most famous localization algorithms is the Distance Vector Hop (DV-Hop). Aiming to minimize the large localization error in the original DV-Hop algorithm, we propose an improved DV-Hop algorithm in this paper. The distance between unknown nodes and anchors is estimated using the received signal strength indication (RSSI) and the polynomial approximation. Moreover, the proposed algorithm uses a recursive computation of the localization process to improve the accuracy of position estimation. Experimental results show that the proposed localization technique minimizes the localization error and improves the localization accuracy.


Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1179
Author(s):  
Carolina Del-Valle-Soto ◽  
Carlos Mex-Perera ◽  
Juan Arturo Nolazco-Flores ◽  
Alma Rodríguez ◽  
Julio C. Rosas-Caro ◽  
...  

Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.


Sign in / Sign up

Export Citation Format

Share Document