Improving DV-Hop-Based Localization Algorithms in Wireless Sensor Networks by Considering Only Closest Anchors

2020 ◽  
Vol 14 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Amanpreet Kaur ◽  
Padam Kumar ◽  
Govind P. Gupta

Localization problem has gained a significant attention in the field of wireless sensor networks in order to support location-based services or information such as supporting geographic routing protocols, tracking events, targets, and providing security protection techniques. A number of variants of DV-Hop-based localization algorithms have been proposed and their performance is measured in terms of localization error. In all these algorithms, while determining the location of a non-anchor node, all the anchor nodes are taken into consideration. However, if only the anchors close to the node are considered, it will be possible to reduce the localization error significantly. This paper explores the effect of the close anchors in the performance of the DV-Hop-based localization algorithms and an improvement is proposed by considering only the closest anchors. The simulation results show that considering closest anchors for estimation of the location reduces localization error significantly as compared to considering all the anchors.

Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Author(s):  
Santosh Ashokrao Darade ◽  
M. Akkalakshmi

The localization of underwater sensors is the most crucial task in underwater wireless sensor networks (UWSNs). The sensors, which are situated under the water, sense data from the environment, and sensed data is transmitted to the monitoring station. Although the monitoring station receives the sensed data, the data is meaningless without knowing the exact position of the sensor. Localization is the major issue in UWSN to be resolved. There are several localization algorithms available for terrestrial wireless sensor networks (WSN), but there are comparatively few localization algorithms available for UWSNs. An improved range-based localization method is introduced in this paper to discover localization issue. To evaluate the location of the target sensors, localization error is further to be reduced. The localization error is reduced by applying the whale optimization algorithm (WOA) in this technique. Simulation results demonstrate that performance metrics of the proposed approach outperform the existing work in terms of localization error and localization coverage.


Author(s):  
Sabri Yassine ◽  
Najib El Kamoun

Due to open network nature of wireless sensor networks make them highly vulnerable to a variety of security attacks and easy target for adversaries, which may capture these nodes, analyze and easily insert fake route information. Wireless sensor network is an emerging, cost effective and unsupervised solution for collecting this information from the physical world and sending this information back to centralized authority for further processing. GRPW (Geographic Routing in connected wireless sensor networks based on Multiple Sinks) is one of the basic routing protocols used for Supporting Mobile Sinks in Wireless Sensor Networks. GRPW, a geographical routing protocol for wireless sensor networks, is based on an architecture partitioned by logical levels, on the other hand based on a multipoint relaying flooding technique to reduce the number of topology broadcast. GRPW-MuS uses periodic HELLO packets to neighbor detection. The wormhole attack can form a serious threat in wireless sensor networks, especially against many wireless sensor networks routing protocols and location-based wireless security systems. Here, a trust model to handle this attack in GRPW is provided called GRPW-MuS-s. Using OMNET++ simulation and the MiXiM framework, results show that GRPW-MuS-s protocol only has very small false positives for wormhole detection during the neighbor discovery process (less than GRPW). The average energy usage at each node for GRPW-MuS-s protocol during the neighbor discovery and route discovery is very low than GRPW-MuS, which is much lower than the available energy at each node. The cost analysis shows that GRPW-MuS-s protocol only needs small memory usage at each node, which is suitable for the sensor network.


Author(s):  
Shakila R. ◽  
B. Paramasivan

The localization of underwater sensors is the most crucial task in underwater wireless sensor networks (UWSNs). The sensors which are situated under the water sense data from the environment and transmit to the monitoring station. Although the monitoring station receives the data, it is meaningless without knowing the exact position of the sensor. Localization is the major issue in UWSN to be resolved. There are several localization algorithms available for terrestrial wireless sensor networks (WSN) but there are comparatively few localization algorithms are available for UWSNs. An improved range-based localization method is introduced in this article to discover localization issue. To evaluate the location of the target sensors, the localization error is further reduced. The localization error is reduced by applying the Whale Optimization Algorithm (WOA) in this technique. Simulation results demonstrate that performance metrics of the proposed approach outperforms that of the existing work in terms of localization error and localization coverage.


Sign in / Sign up

Export Citation Format

Share Document