scholarly journals INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

Sensors ◽  
2015 ◽  
Vol 15 (9) ◽  
pp. 23286-23302 ◽  
Author(s):  
Yanbin Gao ◽  
Shifei Liu ◽  
Mohamed Atia ◽  
Aboelmagd Noureldin
2012 ◽  
Vol 241-244 ◽  
pp. 439-443
Author(s):  
Fang Chen ◽  
Yun Xi Xu

It is important that scene matching algorithm should satisfy the requirements of real-time, robustness and high-precision for inertial integrated navigation system. And considering the serious distortion and speckle noises of SAR images, we proposed a new scene matching algorithm for the SAR/INS integrated navigation system with high-speed and robustness based on Oriented FAST and Rotated BRIEF (ORB). We started by detecting scale-space FAST-based features in combination with an efficiently computed orientation in the image. Then, we calculated feature point's Rotation-Aware BRIEF descriptor which performs well with rotation and match features by computing Hamming distance between descriptors. Finally, we adopted GroupSAC which are proposed recently to remove the false matching points and the least square algorithm for getting the distortion transformation parameters that are the aircraft position errors and rotation transform parameters between real image and reference image. Experimental results on real SAR images indicate that our algorithm is invariant to various image transformations due to rotation and scale, and also robust to speckle noise and extremely efficient to compute, better than SIFT in many situations. Therefore, our algorithm can meet the high performance needs for matching navigation in the SAR/INS integrated navigation system.


2017 ◽  
Vol 70 (6) ◽  
pp. 1183-1204 ◽  
Author(s):  
Wei Jiang ◽  
Yong Li ◽  
Chris Rizos ◽  
Baigen Cai ◽  
Wei Shangguan

We describe an integrated navigation system based on Global Navigation Satellite Systems (GNSS), an Inertial Navigation System (INS) and terrestrial ranging technologies that can support accurate and seamless indoor-outdoor positioning. To overcome severe multipath disturbance in indoor environments, Locata technology is used in this navigation system. Such a “Locata-augmented” navigation system can operate in different positioning modes in both indoor and outdoor environments. In environments where GNSS is unavailable, e.g. indoors, the proposed system is designed to operate in the Locata/INS “loosely-integrated” mode. On the other hand, in outdoor environments, all GNSS, Locata and INS measurements are available, and all useful information can be fused via a decentralised Federated Kalman filter. To evaluate the proposed system for seamless indoor-outdoor positioning, an indoor-outdoor test was conducted at a metal-clad warehouse. The test results confirmed that the proposed navigation system can provide continuous and reliable position and attitude solutions, with the positioning accuracy being better than five centimetres.


2011 ◽  
Vol 40 (3) ◽  
pp. 471-475
Author(s):  
许允喜 XU Yunxi ◽  
蒋云良 JIANG Yunliang ◽  
陈方 CHEN Fang

2018 ◽  
Vol 30 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Satoshi Suzuki ◽  

In this study, a novel robust navigation system for a drone in global positioning system (GPS) and GPS-denied environments is proposed. In general, the drone uses position and velocity information from GPS for guidance and control. However, GPS cannot be used in several environments; for example, GPS exhibits huge errors near buildings and trees, indoor environments. In such GPS-denied environments, a Laser Imaging Detection and Ranging (LIDAR) sensor-based navigation system has generally been used. However, the LIDAR sensor also has a weakness, and it cannot be used in an open outdoor environment where GPS can be used. Therefore, it is advantageous to develop an integrated navigation system that operates seamlessly in both GPS and GPS-denied environments. In this study, an integrated navigation system for the drone using GPS and LIDAR was developed. The design of the navigation system is based on the extended Kalman filter, and the effectiveness of the developed system is verified by numerical simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document