scholarly journals A New Approach of Oil Spill Detection Using Time-Resolved LIF Combined with Parallel Factors Analysis for Laser Remote Sensing

Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1347 ◽  
Author(s):  
Deqing Liu ◽  
Xiaoning Luan ◽  
Jinjia Guo ◽  
Tingwei Cui ◽  
Jubai An ◽  
...  
2020 ◽  
Vol 12 (21) ◽  
pp. 3647
Author(s):  
Rodrigo N. Vasconcelos ◽  
André T. Cunha Lima ◽  
Carlos A. D. Lentini ◽  
Garcia V. Miranda ◽  
Luís F. Mendonça ◽  
...  

Oil spill detection and mapping (OSPM) is an extremely relevant issue from a scientific point of view due to the environmental impact on coastal and marine ecosystems. In this study, we present a new approach to assess scientific literature for the past 50 years. In this sense, our study aims to perform a bibliometric and network analysis using a literature review on the application of OSPM to assess researchers and trends in this field of science. In methodological terms we used the Scopus base to search for articles in the literature, then we used bibliometric tools to access information and reveal quantifying patterns in this field of literature. Our results suggest that the detection of oil in the sea has undergone a great evolution in the last decades and there is a strong relationship between the technological evolution aimed at detection with the improvement of remote sensing data acquisition methods. The most relevant contributions in this field of science involved countries such as China, the United States, and Canada. We revealed aspects of great importance and interest in OSPM literature using a bibliometric and network approach to give a clear overview of this field’s research trends.


2017 ◽  
Vol 202 ◽  
pp. 28-44 ◽  
Author(s):  
Ujwala Bhangale ◽  
Surya S. Durbha ◽  
Roger L. King ◽  
Nicolas H. Younan ◽  
Rangaraju Vatsavai

2005 ◽  
Vol 95 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Camilla Brekke ◽  
Anne H.S. Solberg

2021 ◽  
Vol 14 (1) ◽  
pp. 157
Author(s):  
Zongchen Jiang ◽  
Jie Zhang ◽  
Yi Ma ◽  
Xingpeng Mao

Marine oil spills can damage marine ecosystems, economic development, and human health. It is important to accurately identify the type of oil spills and detect the thickness of oil films on the sea surface to obtain the amount of oil spill for on-site emergency responses and scientific decision-making. Optical remote sensing is an important method for marine oil-spill detection and identification. In this study, hyperspectral images of five types of oil spills were obtained using unmanned aerial vehicles (UAV). To address the poor spectral separability between different types of light oils and weak spectral differences in heavy oils with different thicknesses, we propose the adaptive long-term moment estimation (ALTME) optimizer, which cumulatively learns the spectral characteristics and then builds a marine oil-spill detection model based on a one-dimensional convolutional neural network. The results of the detection experiment show that the ALTME optimizer can store in memory multiple batches of long-term oil-spill spectral information, accurately identify the type of oil spills, and detect different thicknesses of oil films. The overall detection accuracy is larger than 98.09%, and the Kappa coefficient is larger than 0.970. The F1-score for the recognition of light-oil types is larger than 0.971, and the F1-score for detecting films of heavy oils with different film thicknesses is larger than 0.980. The proposed optimizer also performs well on a public hyperspectral dataset. We further carried out a feasibility study on oil-spill detection using UAV thermal infrared remote sensing technology, and the results show its potential for oil-spill detection in strong sunlight.


2020 ◽  
Vol 12 (20) ◽  
pp. 3338
Author(s):  
Rami Al-Ruzouq ◽  
Mohamed Barakat A. Gibril ◽  
Abdallah Shanableh ◽  
Abubakir Kais ◽  
Osman Hamed ◽  
...  

Remote sensing technologies and machine learning (ML) algorithms play an increasingly important role in accurate detection and monitoring of oil spill slicks, assisting scientists in forecasting their trajectories, developing clean-up plans, taking timely and urgent actions, and applying effective treatments to contain and alleviate adverse effects. Review and analysis of different sources of remotely sensed data and various components of ML classification systems for oil spill detection and monitoring are presented in this study. More than 100 publications in the field of oil spill remote sensing, published in the past 10 years, are reviewed in this paper. The first part of this review discusses the strengths and weaknesses of different sources of remotely sensed data used for oil spill detection. Necessary preprocessing and preparation of data for developing classification models are then highlighted. Feature extraction, feature selection, and widely used handcrafted features for oil spill detection are subsequently introduced and analyzed. The second part of this review explains the use and capabilities of different classical and developed state-of-the-art ML techniques for oil spill detection. Finally, an in-depth discussion on limitations, open challenges, considerations of oil spill classification systems using remote sensing, and state-of-the-art ML algorithms are highlighted along with conclusions and insights into future directions.


2020 ◽  
Vol 12 (20) ◽  
pp. 3416
Author(s):  
Shamsudeen Temitope Yekeen ◽  
Abdul-Lateef Balogun

Although advancements in remote sensing technology have facilitated quick capture and identification of the source and location of oil spills in water bodies, the presence of other biogenic elements (lookalikes) with similar visual attributes hinder rapid detection and prompt decision making for emergency response. To date, different methods have been applied to distinguish oil spills from lookalikes with limited success. In addition, accurately modeling the trajectory of oil spills remains a challenge. Thus, we aim to provide further insights on the multi-faceted problem by undertaking a holistic review of past and current approaches to marine oil spill disaster reduction as well as explore the potentials of emerging digital trends in minimizing oil spill hazards. The scope of previous reviews is extended by covering the inter-related dimensions of detection, discrimination, and trajectory prediction of oil spills for vulnerability assessment. Findings show that both optical and microwave airborne and satellite remote sensors are used for oil spill monitoring with microwave sensors being more widely used due to their ability to operate under any weather condition. However, the accuracy of both sensors is affected by the presence of biogenic elements, leading to false positive depiction of oil spills. Statistical image segmentation has been widely used to discriminate lookalikes from oil spills with varying levels of accuracy but the emergence of digitalization technologies in the fourth industrial revolution (IR 4.0) is enabling the use of Machine learning (ML) and deep learning (DL) models, which are more promising than the statistical methods. The Support Vector Machine (SVM) and Artificial Neural Network (ANN) are the most used machine learning algorithms for oil spill detection, although the restriction of ML models to feed forward image classification without support for the end-to-end trainable framework limits its accuracy. On the other hand, deep learning models’ strong feature extraction and autonomous learning capability enhance their detection accuracy. Also, mathematical models based on lagrangian method have improved oil spill trajectory prediction with higher real time accuracy than the conventional worst case, average and survey-based approaches. However, these newer models are unable to quantify oil droplets and uncertainty in vulnerability prediction. Considering that there is yet no single best remote sensing technique for unambiguous detection and discrimination of oil spills and lookalikes, it is imperative to advance research in the field in order to improve existing technology and develop specialized sensors for accurate oil spill detection and enhanced classification, leveraging emerging geospatial computer vision initiatives.


Sign in / Sign up

Export Citation Format

Share Document