scholarly journals Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor

Sensors ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 1399 ◽  
Author(s):  
◽  
◽  
Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4686
Author(s):  
Qiuzhan Zhou ◽  
Yuzhu Chen ◽  
Jikang Hu ◽  
Boshi Lyu

The electrochemical principles presented in this paper can be applied to the manufacture of vibration sensors for oil and gas exploration, as well as long-period vibration sensors for the observation of natural earthquakes. To facilitate the manufacture of high-volume electrochemical accelerometer (EAM), this paper presents an AC equivalent circuit model of an EAM in a low-frequency range. A 3D time-dependent numerical simulation based on finite element analysis was designed to combine a complex chemical reaction with electric circuit theory. A sensitive chip channel model was constructed by using partial differential equations and the problem caused by a designed mathematical model was solved by using multi-physics finite element analysis. When the electrochemical properties of an electrochemical vibration sensor and its design parameters as well as the parameters of the AC equivalent circuit model are considered, the abstract processing of the sensor on the equivalent circuit is better accomplished. The effectiveness of the proposed simulation model and the equivalent circuit model were verified by comparing the amplitude-frequency characteristic curve of the equivalent circuit with the amplitude-frequency characteristic curve of the single-channel simulation model of the sensitive chip. These model not only have great significance for the design guidance of an external conditioning circuit but also provide an effective method to decouple the output signal and noise of the sensor reaction cavity.


2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Chaemin Im ◽  
Geonyoung Kim ◽  
Jeseok Bang ◽  
Kibum Choi ◽  
Soobin An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document