scholarly journals Design and Characteristic Analysis of Cross-Capacitance Fuel-Level Sensor

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3984 ◽  
Author(s):  
Jing Yu ◽  
Hang Yu ◽  
Dongsheng Li

A cross-capacitance liquid level sensor is based on the principle of cross capacitance. This study designed a new single-tube cross-capacitance fuel-level sensor. The fuel-level measurement model is established for a single-tube cross-capacitive sensor, and the relationship between the measured liquid level and sensor output capacitance is derived. The characteristics of the sensor were tested experimentally. The experimental results demonstrate that the linearity error of the liquid-level sensor of the single-tube calculation for the spacecraft is ±0.48%, the repeatability error is ±0.47%, and the hysteresis error is ±0.68%. The cross-capacitive fuel-level sensor developed in this study can be used in the fuel tank of spacecrafts owing to its low weight and high precision.

Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 522-524 ◽  
Author(s):  
Ning Jing

Purpose This paper aims to propose a liquid level sensor with a multi-S-bend plastic optical fiber. Design/methodology/approach The principle of liquid sensing used is based on the leakage of higher modes out of the fiber and repeated regeneration in the following bend sections. Therefore, a propagation loss was introduced in every bend section of the fiber with the loss depending on the refractive index of the environment. Findings Therefore, a continue shift in the liquid level can be detected by observing changes in the propagation loss of the fiber. The sensor features compactness and a flexible resolution. Originality/value Compared with the exited ones, the sensor has capability of continue liquid measurement and a greater measurement range.


2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1577-1584
Author(s):  
Jing Yu ◽  
Hang Yu ◽  
Ying Wang

In order to improve the accuracy and reduce the weight of the cross-capacitor fuel level sensor, a novel single-tube cross-capacitor fuel level sensor is designed. Specifically, the fuel level measurement model of the single-tube cross-capacitance sensor is established, and the relationship between the measured liquid level and the sensor output capacitance is derived. Then, a finite element analysis model is constructed to solve the capacitance output of the sensor. The results of experiments conducted demonstrate that the output capacitance value of the designed single-tube cross-capacitive sensor changes linearly in the range 0-14 pF, with linearity ? 0.8%, hysteresis error ? 0.1%, and maximum reference error ?1.0% FS at a liquid level of 120 mm. The optimized structural parameters were as follows: plate gap angle ? = 2?, quartz tube inner radius R0 = 11.5 mm, quartz tube thickness R1 ? R0 = 1.6 mm, and sensitivity = 0.0723 pF/mm (representing an 11.1% increase after optimization). The cross-capacitive fuel level sensor developed in this study is both lightweight and high precision.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Roldán-Varona ◽  
Rosa Ana Pérez-Herrera ◽  
Luis Rodríguez-Cobo ◽  
Luis Reyes-González ◽  
Manuel López-Amo ◽  
...  

AbstractIn this work, a novel optical fiber sensor capable of measuring both the liquid level and its refractive index is designed, manufactured and demonstrated through simulations and experimentally. For this, a silica capillary hollow-core fiber is used. The fiber, with a sensing length of 1.55 mm, has been processed with a femtosecond laser, so that it incorporates four holes in its structure. In this way, the liquid enters the air core, and it is possible to perform the sensing through the Fabry–Perot cavities that the liquid generates. The detection mode is in reflection. With a resolution of 4 μm (liquid level), it is in the state of the art of this type of sensor. The system is designed so that in the future it will be capable of measuring the level of immiscible liquids, that is, liquids that form stratified layers. It can be useful to determine the presence of impurities in tanks.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Zhijun Zhang ◽  
Shiwei Zhang

The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.


2004 ◽  
Author(s):  
S. Vargas ◽  
Carmen Vazquez ◽  
Ana B. Gonzalo ◽  
Jose M. Pena

2013 ◽  
Author(s):  
Cong-qin Yi ◽  
Yun Luo ◽  
Zheng-ping Zhang

2009 ◽  
Author(s):  
Huanhuan Liu ◽  
Fufei Pang ◽  
Na Chen ◽  
Zhenyi Chen ◽  
Tingyun Wang

2005 ◽  
Author(s):  
Sergei N. Khotiaintsev ◽  
Katya Romo-Medrano ◽  
Vladimir A. Svirid

2016 ◽  
Vol 6 (4) ◽  
pp. 312-317 ◽  
Author(s):  
Yulong Hou ◽  
Wenyi Liu ◽  
Huixin Zhang ◽  
Shan Su ◽  
Jia Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document