scholarly journals Towards Void Hole Alleviation by Exploiting the Energy Efficient Path and by Providing the Interference-Free Proactive Routing Protocols in IoT Enabled Underwater WSNs

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.

2021 ◽  
Author(s):  
R. Thiagarajan ◽  
V. Balajivijayan ◽  
R. Krishnamoorthy ◽  
I. Mohan

Abstract Underwater Wireless Sensor Network offers broad coverage of low data rate acoustic sensor networks, scalability and energy saving routing protocols. Moreover the major problem in underwater networks is energy consumption, which arises due to lower bandwidth and propagation delays. An underwater wireless sensor network frequently employs acoustic channel communications since radio signals not worked in deep water. The transmission of data packets and energy-efficient routing are constraints for the unique characteristics of underwater. The challenging issue is an efficient routing protocol for UWSNs. Routing protocols take advantage of localization sensor nodes. Many routing protocols have been proposed for sensing nodes through a localization process. Here we proposed a Novel vector-based forwarding and efficient depth-based routing protocol. The proposed novel vector-based forwarding provides robust, scalable, and energy-efficient routing. It easily transfers nodes from source to destination. It adopts the localized and distributed alternation that allows nodes to weigh transferring packets and decreases energy consumption and provides better optimal paths. Efficient depth-based routing is a stochastic model that will succeed in a high transmission loss of the acoustic channel. The simulation was used to compare the energy consumption, network lifetime in the form of depth-based routing, delivery ratio, and vector-based forwarding to prove the optimal route finding paths and data transmission propagation delay.


2018 ◽  
Vol 142 ◽  
pp. 154-167 ◽  
Author(s):  
Reem E. Mohamed ◽  
Walid R. Ghanem ◽  
Abeer T. Khalil ◽  
Mohamed Elhoseny ◽  
Muhammad Sajjad ◽  
...  

2010 ◽  
Vol 6 (1) ◽  
pp. 216716 ◽  
Author(s):  
Chiranjib Patra ◽  
Anjan Guha Roy ◽  
Samiran Chattopadhyay ◽  
Parama Bhaumik

Preserving energy or battery power of wireless sensor network is of major concern. As such type of network, the sensors are deployed in an ad hoc manner, without any deterministic way. This paper is concerned with applying standard routing protocols into wireless sensor network by using topology modified by neural network which proves to be energy efficient as compared with unmodified topology. Neural network has been proved to be a powerful tool in the distributed environment. Here, to capture the true distributed nature of the Wireless Sensor Network (WSN), neural network's Self-Organizing Feature Map (SOFM) is used.


Wireless sensor network consists of various sensor nodes connected through wireless media. Sensor nodes are tiny devices having lesser energy capabilities. Sensor nodes are either ad-hoc or mobile in their environment. Wireless sensor network route of transmission media is discovered by routing protocols and responsible for secure communication between sensor nodes. Energy is a precious resource of sensor nodes, and the entire lifetime of WSNs is depending on the energy capability of the sensor nodes. The fundamental problem is how to organize topology of WSN for deployed sensor nodes with lesser power consumption as possible. Major problems in wireless sensor networks which consume extra energy are interference, control message overhead, packet delay, unnecessary transmission, and bandwidth utilization. Therefore, energy efficient techniques are needed to overcome these problems. Hierarchical routing is the best routing method for finding optimal path between sensor nodes which enhance the lifetime of the network. This paper focuses towards various hierarchical energy efficient routing in wireless sensor networks and analyzes various features of WSN that should consider during designing of routing protocols.


Sign in / Sign up

Export Citation Format

Share Document