scholarly journals Refined PHD Filter for Multi-Target Tracking under Low Detection Probability

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2842 ◽  
Author(s):  
Sen Wang ◽  
Qinglong Bao ◽  
Zengping Chen

Radar target detection probability will decrease as the target echo signal-to-noise ratio (SNR) decreases, which has an adverse influence on the result of multi-target tracking. The performances of standard multi-target tracking algorithms degrade significantly under low detection probability in practice, especially when continuous miss detection occurs. Based on sequential Monte Carlo implementation of Probability Hypothesis Density (PHD) filter, this paper proposes a heuristic method called the Refined PHD (R-PHD) filter to improve multi-target tracking performance under low detection probability. In detail, this paper defines a survival probability which is dependent on target state, and labels individual extracted targets and corresponding particles. When miss detection occurs due to low detection probability, posterior particle weights will be revised according to the prediction step. Finally, we transform the target confirmation problem into a hypothesis test problem, and utilize sequential probability ratio test to distinguish real targets and false alarms in real time. Computer simulations with respect to different detection probabilities, average numbers of false alarms and continuous miss detection durations are provided to corroborate the superiority of the proposed method, compared with standard PHD filter, Cardinalized PHD (CPHD) filter and Cardinality Balanced Multi-target Multi-Bernoulli (CBMeMBer) filter.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4115 ◽  
Author(s):  
Feng Lian ◽  
Liming Hou ◽  
Bo Wei ◽  
Chongzhao Han

A new optimization algorithm of sensor selection is proposed in this paper for decentralized large-scale multi-target tracking (MTT) network within a labeled random finite set (RFS) framework. The method is performed based on a marginalized δ-generalized labeled multi-Bernoulli RFS. The rule of weighted Kullback-Leibler average (KLA) is used to fuse local multi-target densities. A new metric, named as the label assignment (LA) metric, is proposed to measure the distance for two labeled sets. The lower bound of LA metric based mean square error between the labeled multi-target state set and its estimate is taken as the optimized objective function of sensor selection. The proposed bound is obtained by the information inequality to RFS measurement. Then, we present the sequential Monte Carlo and Gaussian mixture implementations for the bound. Another advantage of the bound is that it provides a basis for setting the weights of KLA. The coordinate descent method is proposed to compromise the computational cost of sensor selection and the accuracy of MTT. Simulations verify the effectiveness of our method under different signal-to- noise ratio scenarios.


Author(s):  
Xiao Chen ◽  
Yaan Li ◽  
Yuxing Li ◽  
Jing Yu

The estimation of underwater multi-target state has always been the difficult problem of active sonar target tracking.In order to get the variable number of target and their state, the random finite set theory is applied to multi-target tracking system.This theory not only effectively avoids the problem of multi-target tracking data association, and also realizes the estimation of time-varying number of targets and their states.Due to Probability Hypothesis Density(PHD) recursion propagates cardnality distribution with only a single parameter, a new generalization of the PHD recursion called Cardinalized Probability Hypothesis Density(CPHD) recursion, which jointly propagates the intensity function and the cardnality distribution, while have a big computation than PHD.Also there did not have closed-form solution for PHD recursion and CPHD recursion, so for linear Gaussian multi-target tracking system, the Gaussian Mixture Probability Hypothesis Density and Gaussian Mixture Cardinalized Probability Hypothesis Density(GM-CPHD) filter algorithm is put forward.GM-CPHD is more accurate than GM-PHD in estimation of the time-varying number of targets.In this paper, we use the ellipse gate tracking strategy to reduce computation in GM-CPHD filtering algorithm.At the same time, according to the characteristics of underwater target tracking, using active sonar equation, we get the relationship between detection probability, distance and false alarm, when fixed false alarm, analytic formula of the relationship between adaptive detection probability and distance is obtained, we puts forward the adaptive detection probability GM-CPHD filtering algorithm.Simulation shows that the combination of ellipse tracking gate strategy and adaptive detection probability GM-CPHD filtering algorithm can realize the estimation of the time-varying number of targets and their state more accuracy in dense clutter environment.


2020 ◽  
Author(s):  
David Ben

Tracking an unknown and time-varying number of targets (e.g., speakers) in indoor environments using audio-visual (AV) modalities has received increasing interest in numerous fields including video conferencing, individual speaker discrimination, and human-computer interaction. The audio-visual sequential Monte Carlo probability hypothesis density (AV-SMC-PHD) filter is a popular baseline for multi-target tracking, offering an elegant framework for fusing audio-visual information and dealing with a varying number of speakers. However, the performance of this filter can be adversely affected by the weight degeneracy problem, where the weights of most of the particles may become very small, while only few remain significant, during the iteration of the algorithm. In this paper, we will short discuss the multi-target tracking.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3611
Author(s):  
Yang Gong ◽  
Chen Cui

In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4416 ◽  
Author(s):  
Defu Jiang ◽  
Ming Liu ◽  
Yiyue Gao ◽  
Yang Gao ◽  
Wei Fu ◽  
...  

The random finite set (RFS) approach provides an elegant Bayesian formulation of the multi-target tracking (MTT) problem without the requirement of explicit data association. In order to improve the performance of the RFS-based filter in radar MTT applications, this paper proposes a time-matching Bayesian filtering framework to deal with the problem caused by the diversity of target sampling times. Based on this framework, we develop a time-matching joint generalized labeled multi-Bernoulli filter and a time-matching probability hypothesis density filter. Simulations are performed by their Gaussian mixture implementations. The results show that the proposed approach can improve the accuracy of target state estimation, as well as the robustness.


Sign in / Sign up

Export Citation Format

Share Document