scholarly journals A Robust Indoor Positioning Method based on Bluetooth Low Energy with Separate Channel Information

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3487 ◽  
Author(s):  
Baichuan Huang ◽  
Jingbin Liu ◽  
Wei Sun ◽  
Fan Yang

Among the current indoor positioning technologies, Bluetooth low energy (BLE) has gained increasing attention. In particular, the traditional distance estimation derived from aggregate RSS and signal-attenuation models is generally unstable because of the complicated interference in indoor environments. To improve the adaptability and robustness of the BLE positioning system, we propose making full use of the three separate channels of BLE instead of their combination, which has generally been used before. In the first step, three signal-attenuation models are separately established for each BLE advertising channel in the offline phase, and a more stable distance in the online phase can be acquired by assembling measurements from all three channels with the distance decision strategy. Subsequently, a weighted trilateration method with uncertainties related to the distances derived in the first step is proposed to determine the user’s optimal position. The test results demonstrate that our proposed algorithm for determining the distance error achieves a value of less than 2.2 m at 90%, while for the positioning error, it achieves a value of less than 2.4 m at 90%. Compared with the traditional methods, the positioning error of our method is reduced by 33% to 38% for different smartphones and scenarios.

2019 ◽  
Vol 1 (2) ◽  
pp. 1-5
Author(s):  
Nurul Fatehah Zulkpli ◽  
Nor Azlina Ab. Aziz ◽  
Noor Ziela Abd Rahman ◽  
Rosli Besar

Indoor Positioning System (IPS) is used to locate a person, an object or a location inside a building. IPS is important in providing location-based services, which has recently gain much popularity. The services ease visitors’ navigation at unfamiliar premises. Location-based services depend on the capability of IPS to accurately determine the location of the user, which is a challenging issue in indoor environments. Several wireless technologies are available. In this paper, two of the most widely used IPS technologies are reviewed which are, WiFi and Bluetooth low energy (BLE). Their advantages and disadvantages are reviewed and reported here. Comparison of the systems based on their performance, accuracy and limitations are presented as well.


2019 ◽  
Vol 1 (2) ◽  
pp. 1-5
Author(s):  
Nurul Fatehah Zulkpli ◽  
Nor Azlina Ab. Aziz ◽  
Noor Ziela Abd Rahman ◽  
Rosli Besar

Indoor Positioning System (IPS) is used to locate a person, an object or a location inside a building. IPS is important in providing location-based services, which hasrecently gainmuchpopularity. The services ease visitors’ navigation at unfamiliar premises. Location-based services depend on the capability of IPS to accurately determine the location of the user, which is a challenging issue in indoor environments. Several wireless technologies are available. In this paper, two of the most widely used IPS technologies are reviewed which are, WiFi and Bluetooth low energy (BLE). Their advantages and disadvantages are reviewed and reported here.Comparison of the systemsbased on theirperformance, accuracy and limitations are presented as well.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 971
Author(s):  
Aybars Kerem Taşkan ◽  
Hande Alemdar

Indoor positioning is getting increased attention due to the availability of larger and more sophisticated indoor environments. Wireless technologies like Bluetooth Low Energy (BLE) may provide inexpensive solutions. In this paper, we propose obstruction-aware signal-loss-tolerant indoor positioning (OASLTIP), a cost-effective BLE-based indoor positioning algorithm. OASLTIP uses a combination of techniques together to provide optimum tracking performance by taking into account the obstructions in the environment, and also, it can handle a loss of signal. We use running average filtering to smooth the received signal data, multilateration to find the measured position of the tag, and particle filtering to track the tag for better performance. We also propose an optional receiver placement method and provide the option to use fingerprinting together with OASLTIP. Moreover, we give insights about BLE signal strengths in different conditions to help with understanding the effects of some environmental conditions on BLE signals. We performed extensive experiments for evaluation of the OASLTool we developed. Additionally, we evaluated the performance of the system both in a simulated environment and in real-world conditions. In a highly crowded and occluded office environment, our system achieved 2.29 m average error, with three receivers. When simulated in OASLTool, the same setup yielded an error of 2.58 m.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 136858-136871
Author(s):  
Lu Bai ◽  
Fabio Ciravegna ◽  
Raymond Bond ◽  
Maurice Mulvenna

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 215173-215191
Author(s):  
Haiyun Yao ◽  
Hong Shu ◽  
Xinlian Liang ◽  
Hongji Yan ◽  
Hongxing Sun

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4550 ◽  
Author(s):  
Vasilis Stavrou ◽  
Cleopatra Bardaki ◽  
Dimitris Papakyriakopoulos ◽  
Katerina Pramatari

This paper has developed and deployed a Bluetooth Low Energy (BLE) beacon-based indoor positioning system in a two-floor retail store. The ultimate purpose of this study was to compare the different indoor positioning techniques towards achieving efficient position determination of moving customers in the retail store. The innovation of this research lies in its context (the retail store) and the fact that this is not a laboratory, controlled experiment. Retail stores are challenging environments with multiple sources of noise (e.g., shoppers’ moving) that impede indoor localization. To the best of the authors’ knowledge, this is the first work concerning indoor localization of consumers in a real retail store. This study proposes an ensemble filter with lower absolute mean and root mean squared errors than the random forest. Moreover, the localization error is approximately 2 m, while for the random forest, it is 2.5 m. In retail environments, even a 0.5 m deviation is significant because consumers may be positioned in front of different store shelves and, thus, different product categories. The more accurate the consumer localization, the more accurate and rich insights on the customers’ shopping behavior. Consequently, retailers can offer more effective customer location-based services (e.g., personalized offers) and, overall, better consumer localization can improve decision making in retailing.


Sign in / Sign up

Export Citation Format

Share Document