scholarly journals A Displacement Sensor Based on a Normal Mode Helical Antenna

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3767 ◽  
Author(s):  
Xue ◽  
Yi ◽  
Xie ◽  
Wan ◽  
Ding

This paper presents a passive displacement sensor based on a normal mode helical antenna. The sensor consists of an external helical antenna and an inserting dielectric rod. First, the perturbation theory is adopted to demonstrate that both the electric intensity and magnetic intensity have a noticeable gradient change within the in-and-out entrance of the helical antenna, which will cause the sensor to experience a resonant frequency shift. This phenomenon was further verified by numerical simulation using the Ansoft high frequency structure simulator (HFSS), and results show the linear correlation between the retrieved resonant frequency and the displacement. Two sets of proposed sensors were fabricated. The experiments validated that the resonant frequency shifts are linearly proportional to the applied displacement, and the sensing range can be adjusted to accommodate the user’s needs.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5310
Author(s):  
Songtao Xue ◽  
Zhiquan Zheng ◽  
Shuai Guan ◽  
Liyu Xie ◽  
Guochun Wan ◽  
...  

This paper presents a capacitive displacement sensor based on a capacitively fed inverted-F antenna (CFIFA) for displacement detection. The sensor is composed of a grounded L-shape patch and a rectangular upper patch, forming a capacitor between them. The asymmetric dipole model is adopted to explain the frequency shift and current distribution of the proposed antenna sensor at its first-order resonance. The numerical simulation of the CFIFA using the Ansoft high-frequency structure simulator (HFSS) software is carried out to optimize the dimensional parameters, allowing the antenna to perform better. Two sets of CFIFAs are fabricated and tested for verification. Results show that the CFIFA has a good linear relationship between its first resonant frequency and the relative displacement, and is capable of a long range of displacement measuring.


2020 ◽  
Vol 9 (1) ◽  
pp. 1722-1725

To improve the antenna characteristics in terms of bandwidth, gain and its radiation characteristics without providing any phase reflections, Artificial Magnetic Conductor (AMC) are used in antenna designing. This paper initially designed AMC structure for 2.4GHz frequency. The proposed AMC structure consists of three L shaped and inverted L shaped slots and provides zero degrees phase reflection at 2.4GHz resonant frequency. This proposed AMC structure is incorporated on conventional micro strip square patch antenna and results are simulated in High Frequency Structure Simulator (HFSS) software. The Proposed AMC incorporated patch antenna, return loss is improved from -16.16dB to -31.75dB, VSWR is from 1.42 to 1.05, the band width is increased from 16.5 MHz to 348.1 MHz This design resonates at a frequency of 2.4GHz and applicable to Wi-Fi applications.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3989 ◽  
Author(s):  
Michal Herbko ◽  
Przemyslaw Lopato

In this paper miniaturization of a microstrip patch strain sensor (MPSS) using fractal geometry was proposed and analyzed. For this purpose, the transducer of Sierpinski curve geometry was utilized and compared with the most commonly utilized rectangular resonator-based one. Both sensors were designed for the same resonant frequency value (2.725 GHz). This fact allows analysis of the influence of the patch (resonator) shape and size on the resonant frequency shift. This is very important as the sensors with the same resonator shape but designed on various operating frequencies have various resonant frequency shifts. Simulation and experimental analysis for all sensors were carried out. A good convergence between results of simulation and measurements was achieved. The obtained results proved the possibility of microstrip strain sensor dimensions reduction using Sierpinski curve fractal geometry. Additionally, an influence of microstrip line deformation for proposed sensors was studied.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4884
Author(s):  
Songtao Xue ◽  
Kang Jiang ◽  
Shuai Guan ◽  
Liyu Xie ◽  
Guochun Wan ◽  
...  

This paper presents a passive wireless long-range displacement sensor that is based on the circular patch antenna, and the detecting range of the sensor can be customized. The sensor consists of a chipped circular antenna with two opened rectangular windows, a substrate, and a ground plate with a sloping channel. No bonding between the antenna and the ground plate allows for the chipped antenna to slide along the sloping channel. The channel will drive the current flow on the plate once the chip is activated, increasing the effective electrical length and, consequently, decreasing the resonant frequency of the circular antenna. The sensing mechanism equates the measuring displacement to the relative movement of the antenna with respect to the ground that achieves the measurement of long-range displacement and, thus, the proposed sensor can avoid stress damage to the antenna due to excessive deformation. Three different range sensors were simulated in the the Ansoft high frequency structure simulator (HFSS). The results show that the resonance frequency of the antenna has a linear relationship with the varying chute depth beneath the chip. Three sensors were fabricated, and the experimental results also validated that the sensitivity of the sensor can be adjusted.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4327 ◽  
Author(s):  
Songtao Xue ◽  
Zhuoran Yi ◽  
Liyu Xie ◽  
Guochun Wan ◽  
Tao Ding

Monolithic patch antennas for deformation measurements are designed to be stressed. To avoid the issues of incomplete strain transfer ratio and insufficient bonding strength of stressed antennas, this paper presents a passive wireless crack sensor based on an unstressed patch antenna. The rectangular radiation patch of the proposed sensor is partially covered by a radiation sub-patch, and the overlapped length between them will induce the resonate frequency shift representing the crack width. First, the cavity model theory is adopted to show how the resonant frequencies of the crack sensor are related to the overlapped length between the patch antenna and the sub-patch. This phenomenon is further verified by numerical simulation using the Ansoft high-frequency structure simulator (HFSS), and results show a sensitivity of 120.24 MHz/mm on average within an effective measuring range of 1.5 mm. One prototype of proposed sensor was fabricated. The experiments validated that the resonant frequency shifts are linearly proportional to the applied crack width, and the resolution is suitable for crack width measuring.


2021 ◽  
Author(s):  
KELVIN NICHOLSON ◽  
JOHN WANG ◽  
ROWAN HEALEY ◽  
TAYLOR LYNCH ◽  
JOEL PATNIOTIS ◽  
...  

Conformal Loadbearing Antenna Structures (CLAS) take advantage of a combination of structural and electromagnetic functions. CLAS have been developed as an advanced replacement for conventional antennas (such as blades, wires and dishes) to improve the structural efficiency, as well as the electromagnetic and aerodynamic performance of a platform. The CLAS concept permits the direct integration of microwave radiating elements in the structural skin of a platform. Therefore, the antenna will be subjected to structural loading and will deform accordingly. The effects of these structural-induced deformations on the resonant frequency of the antenna will be reported in this paper. This paper will investigate the performance of a carbon veil patch antenna when it is subject to static in-plane. The work presented will include the effects of in-plane loading on the resonant behavior of the patch antenna when the carbon veil is fully bonded and when it is disbonded by the parent structure. This paper will also discuss the effects of substrate delamination on the RF response of the patch antenna. The RF characteristics of the antenna will be modelled using ANSYS High Frequency Structure Simulator (HFSS).


2014 ◽  
Vol 886 ◽  
pp. 386-389
Author(s):  
Jing Wei Wu ◽  
Wei He ◽  
Dan Su ◽  
Jing Mo

Inverted-F antenna loaded meander-line was studied by using High Frequency Structure Simulator V11(hereinafter referred to as HFSS V11). Research had focused on main performance parameters of Inverted-F antenna which loaded different number of meander-lines and different height of meander-lines. According to research, main performance parameters of inverted-F antenna, such as resonant frequency, resonance impedance and S11 parameter of resonance point could be adjusted effectively. Inverted-F antenna could be miniaturized effectively by selecting appropriate number and height of meander-lines. The technology of loaded meander-line is a kind of simple and effective way that can be applied to the RFID field and other areas that have high requirements for miniaturization of antenna.


2015 ◽  
Vol 222 ◽  
pp. 24-30 ◽  
Author(s):  
Tadashi Ishida ◽  
Van Nguyen Quet ◽  
Shota Mochizuki ◽  
Yusuke Kagawa ◽  
Toshio Takayama ◽  
...  

Author(s):  
T. N. Tallman

Conductive nanofiller-modified composites have received a lot of attention from the structural health monitoring (SHM) research community in recent years because these materials are piezoresistive (i.e. they have deformation and damage-dependent electrical conductivity) and are therefore self-sensing. To date, the vast majority of work in this area has utilized direct current (DC) interrogation to identify and/or localize damage. While this approach has been met with much success, it is also well known that nanofiller-modified composites possess frequency-dependent electrical behavior. This behavior can be roughly modeled as a parallel resistor-capacitor circuit. However, much less work has been done to explore the potential this frequency-dependent behavior for damage detection. To this end, the work herein presented covers some preliminary results which leverage high-frequency electrical interrogation for damage detection. More specifically, carbon nanofiber (CNF)/epoxy specimens are produced and connected to an external inductor in both series and parallel configurations. Because the CNF/epoxy electrically behaves like a resistor-capacitor circuit, the inclusion of an inductor enables electrical resonance to be achieved. Changes in resonant frequency are then used for rudimentary damage detection. These preliminary results indicate that the potential of SHM via the piezoresistive effect in nanofiller-modified composites can be considerably expanded by leveraging alternating current (AC) interrogation and resonant frequency principles.


Sign in / Sign up

Export Citation Format

Share Document