THE EFFECTS OF STRUCTURAL-INDUCED DEFORMATION ON THE RESONANCE OF PATCH ANTENNAS

2021 ◽  
Author(s):  
KELVIN NICHOLSON ◽  
JOHN WANG ◽  
ROWAN HEALEY ◽  
TAYLOR LYNCH ◽  
JOEL PATNIOTIS ◽  
...  

Conformal Loadbearing Antenna Structures (CLAS) take advantage of a combination of structural and electromagnetic functions. CLAS have been developed as an advanced replacement for conventional antennas (such as blades, wires and dishes) to improve the structural efficiency, as well as the electromagnetic and aerodynamic performance of a platform. The CLAS concept permits the direct integration of microwave radiating elements in the structural skin of a platform. Therefore, the antenna will be subjected to structural loading and will deform accordingly. The effects of these structural-induced deformations on the resonant frequency of the antenna will be reported in this paper. This paper will investigate the performance of a carbon veil patch antenna when it is subject to static in-plane. The work presented will include the effects of in-plane loading on the resonant behavior of the patch antenna when the carbon veil is fully bonded and when it is disbonded by the parent structure. This paper will also discuss the effects of substrate delamination on the RF response of the patch antenna. The RF characteristics of the antenna will be modelled using ANSYS High Frequency Structure Simulator (HFSS).

2020 ◽  
Vol 9 (1) ◽  
pp. 1722-1725

To improve the antenna characteristics in terms of bandwidth, gain and its radiation characteristics without providing any phase reflections, Artificial Magnetic Conductor (AMC) are used in antenna designing. This paper initially designed AMC structure for 2.4GHz frequency. The proposed AMC structure consists of three L shaped and inverted L shaped slots and provides zero degrees phase reflection at 2.4GHz resonant frequency. This proposed AMC structure is incorporated on conventional micro strip square patch antenna and results are simulated in High Frequency Structure Simulator (HFSS) software. The Proposed AMC incorporated patch antenna, return loss is improved from -16.16dB to -31.75dB, VSWR is from 1.42 to 1.05, the band width is increased from 16.5 MHz to 348.1 MHz This design resonates at a frequency of 2.4GHz and applicable to Wi-Fi applications.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4327 ◽  
Author(s):  
Songtao Xue ◽  
Zhuoran Yi ◽  
Liyu Xie ◽  
Guochun Wan ◽  
Tao Ding

Monolithic patch antennas for deformation measurements are designed to be stressed. To avoid the issues of incomplete strain transfer ratio and insufficient bonding strength of stressed antennas, this paper presents a passive wireless crack sensor based on an unstressed patch antenna. The rectangular radiation patch of the proposed sensor is partially covered by a radiation sub-patch, and the overlapped length between them will induce the resonate frequency shift representing the crack width. First, the cavity model theory is adopted to show how the resonant frequencies of the crack sensor are related to the overlapped length between the patch antenna and the sub-patch. This phenomenon is further verified by numerical simulation using the Ansoft high-frequency structure simulator (HFSS), and results show a sensitivity of 120.24 MHz/mm on average within an effective measuring range of 1.5 mm. One prototype of proposed sensor was fabricated. The experiments validated that the resonant frequency shifts are linearly proportional to the applied crack width, and the resolution is suitable for crack width measuring.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 461 ◽  
Author(s):  
Pronami Bora ◽  
Mona Mudaliar ◽  
Yuvraj Baburao Dhanade ◽  
K Sreelakshm ◽  
Chayan Paul ◽  
...  

A metamaterial extended microstrip rectangular patch antenna with CSRR loading and defected ground structures(DGS) is proposed for wideband applications with band notching at the frequencies of KU band. The proposed antenna is designed by embedding it on Rogers RT/Duroid 5880 substrate with good impedance matching of 50 Ω at the feedline.The high frequency structure simulator (HFSS) is used to design and simulate the antennas parameters in the operating band. Measurement results confirm the antenna characteristics as predicted in the simulation with a slight shift in frequencies.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5310
Author(s):  
Songtao Xue ◽  
Zhiquan Zheng ◽  
Shuai Guan ◽  
Liyu Xie ◽  
Guochun Wan ◽  
...  

This paper presents a capacitive displacement sensor based on a capacitively fed inverted-F antenna (CFIFA) for displacement detection. The sensor is composed of a grounded L-shape patch and a rectangular upper patch, forming a capacitor between them. The asymmetric dipole model is adopted to explain the frequency shift and current distribution of the proposed antenna sensor at its first-order resonance. The numerical simulation of the CFIFA using the Ansoft high-frequency structure simulator (HFSS) software is carried out to optimize the dimensional parameters, allowing the antenna to perform better. Two sets of CFIFAs are fabricated and tested for verification. Results show that the CFIFA has a good linear relationship between its first resonant frequency and the relative displacement, and is capable of a long range of displacement measuring.


2015 ◽  
Vol 8 (6) ◽  
pp. 915-919 ◽  
Author(s):  
Neeraj Rao ◽  
Dinesh Kumar Vishwakarma

This is the first report on novel mushroom-type electromagnetic band gap (EBG) structures, consisting of fractal periodic elements, used for enhancing the gain of microstrip patch antennas. Using CST Microwave studio the performance of rectangular patch antenna has been examined on proposed fractal EBG substrates. It is found that fractal EBGs are more effective in suppressing surface wave thus resulting in higher gain. The gain of rectangular patch has been improved from 6.88 to 10.67 dBi. The proposed fractal EBG will open new avenues for the design and development of variety of high-frequency components and devices with enhanced performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Puneet Khanna ◽  
Amar Sharma ◽  
Kshitij Shinghal ◽  
Arun Kumar

A coplanar waveguide- (CPW-) fed compact wideband defected structure shaped microstrip antenna is proposed for wireless applications. Defected structure is produced by cutting theUshape antenna in the form of two-sided T shape. The proposed antenna consists of two-sidedTshape strip as compared to usual monopole patch antenna for minimizing the height of the antenna. The large space around the radiator is fully utilized as the ground is on the same plane as of radiator. Microstrip line feed is used to excite the proposed antenna placed on an FR4 substrate (dielectric constantεr=4.4). The antenna is practically fabricated and simulated. Simulated results of the proposed antenna have been obtained by using Ansoft High-Frequency Structure Simulator (HFSS) software. These results are compared with measured results by using network analyzer. Measured result shows good agreement with the simulated results. It is observed that the proposed antenna shows a wideband from 2.96 GHz to 7.95 GHz with three bands atf1=3.23 GHz,f2=4.93 GHz, andf3=7.04 GHz.


2014 ◽  
Vol 971-973 ◽  
pp. 1148-1151
Author(s):  
Ruo Yan Han ◽  
Wei He ◽  
Ping Lu ◽  
He Ling Cai ◽  
Jiao Hong

The probe-fed rectangular patch antenna with the Minkowski fractal structure which for 2.45GHz was simulated by using high frequency electromagnetic simulation software HFSS V11.The Simulation results showed that it was similar to side-fed square patch antenna with the Minkowski fractal structure. The resonant frequency decreased with fractal iteration, and the size of the antenna could be miniaturized. And antenna pattern unchanged with fractal iteration mostly, which meet the application requirements basically.


Author(s):  
Rakesh N

Abstract: The evolution of wireless communication system has led path for innovative antenna design specifically in wideband antenna for WiMax application. In this paper design and simulation of microstrip wideband circular patch antenna array operating between 2GHz to 4Ghz is presented. The circular patch antenna is designed to operate at 3GHz line feed and the ground is itched to achieve required wideband characteristics. The simulation is carried out in EM Flow solver, High Frequency Structure Simulator software. For a single patch antenna, the return loss, lesser than -10dB throughout the bandwidth. Later an antenna array is operating between 2GHz to 4GHz frequency is designed and simulated. The return loss is lesser than -12dBi throughout the band and a peak gain is 14.7dBi. Keywords: Microstrip Patch Antenna (MPA), High Frequency Structure Simulator (HFSS).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ghanendra Kumar ◽  
Chakresh Kumar

AbstractIn the last decade, huge development has been seen in the field of wireless communication. The performance depends on the shape and size of the antenna. The future aim of wireless communication is to provide data with high speed data range even in harsh geographical areas. Here aim is to design and compare the E and H slot, T-slot, O-slot and U-slot antenna. The designed patch antenna operates at a frequency of 60 GHz with maximum antenna gain and minimum radiation loss using high frequency structure simulator (HFSS). We will use Rogers RT/duroid 5880 as substrate due to its suitable mechanical and insulating properties. Resonant frequency used will be 60 GHz and height will be 1.6 mm, 1.57 mm, 1.6 mm and 0.508 mm for E and H slot, T-slot, O-slot and U-slot, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4884
Author(s):  
Songtao Xue ◽  
Kang Jiang ◽  
Shuai Guan ◽  
Liyu Xie ◽  
Guochun Wan ◽  
...  

This paper presents a passive wireless long-range displacement sensor that is based on the circular patch antenna, and the detecting range of the sensor can be customized. The sensor consists of a chipped circular antenna with two opened rectangular windows, a substrate, and a ground plate with a sloping channel. No bonding between the antenna and the ground plate allows for the chipped antenna to slide along the sloping channel. The channel will drive the current flow on the plate once the chip is activated, increasing the effective electrical length and, consequently, decreasing the resonant frequency of the circular antenna. The sensing mechanism equates the measuring displacement to the relative movement of the antenna with respect to the ground that achieves the measurement of long-range displacement and, thus, the proposed sensor can avoid stress damage to the antenna due to excessive deformation. Three different range sensors were simulated in the the Ansoft high frequency structure simulator (HFSS). The results show that the resonance frequency of the antenna has a linear relationship with the varying chute depth beneath the chip. Three sensors were fabricated, and the experimental results also validated that the sensitivity of the sensor can be adjusted.


Sign in / Sign up

Export Citation Format

Share Document