scholarly journals Design and Implementation of a Self-Powered Smart Water Meter

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4177 ◽  
Author(s):  
Xue Jun Li ◽  
Peter Han Joo Chong

Smart cities require interactive management of water supply networks and water meters play an important role in such a task. As compared to fully mechanical water meters, electromechanical water meters or fully electronic water meters can collect real-time information through automatic meter reading (AMR), which makes them more suitable for smart cities applications. In this paper, we first study the design principles of existing water meters, and then present our design and implementation of a self-powered smart water meter. The proposed water meter is based on a water turbine generator, which serves for two purposes: (i) to sense the water flow through adaptive signal processing performed on the generated voltage; and (ii) to produce electricity to charge batteries for the smart meter to function properly. In particular, we present the design considerations and implementation details. The wireless transceiver is integrated in the proposed water meter so that it can provide real-time water flow information. In addition, a mobile phone application is designed to provide a user with a convenient tool for water usage monitoring.

2022 ◽  
Vol 1212 (1) ◽  
pp. 012042
Author(s):  
A Amir ◽  
R Fauzi ◽  
Y Arifin

Abstract Clean water is one of the main sectors in smart city that need well management. One of the clean water management is utilization of water meters. The smart meter is more suitable applied for smart city. Recent Smart Water Meter allows water authorities to obtain water consumption data remotely. It also provides ability to collect and record the data in real time that can be utilised for multipurpose. However, in Indonesia, the water meters are used only to measure the total volume of clean water consumption for billing purpose only using mechanical water meter and requires labour intensive manual. Currently, many researches on smart meter design have been developed. However, the smart meter only measure and record the water consumption, without ability in which customer can determine the amount of water as needed. This paper describes design and development of smart water metering with Internet of Things. Flow meter is used as a sensor of water flowing through the pipe. The ability of the proposed smart meter is not only to measure and to record the volume water consumed, but also the customer can determine the water desired and required. The volume of water measured by the smart meter is compared with the manual measurement. The result shows that the water measured manually differs slightly from smart meter measurement using water flow sensor. The maximum difference, error, is 0.03 litres. The proposed smart meter has ability to close the main valve once the determined amount of water is reached.


Author(s):  
N. A. A. Abdul Aziz ◽  
T. A. Musa ◽  
I. A. Musliman ◽  
A. H. Omar ◽  
W. A. Wan Aris

Abstract. Water uses need to be measured, which is critical for evaluating water stress. The Industry 4.0 via the Internet of Things (IoT) and usage of water measurement sensor can provide real-time information on the water flow rate and water pressure, that is crucial for water monitoring and analysis. There is a need for online smart water monitoring that gives out more efficient and sustainable water uses at Universiti Teknologi Malaysia (UTM) campus. A prototype of an online smart water monitoring for UTM, which was developed based on the integration of IoT and Geographical Information System (GIS), consist of four layers; (1) physical layer; (2) network layer; (3) processing layer and, (4) application layer. The findings show that when the water flow increases, the water pressure decreases. When there is no water flow, the lowest value is 52.214 Psi, and the highest value is 60.916 Psi. The latest technology integrating the IoT-GIS for smart water monitoring has shown a very efficient way of providing real-time water parameters information, cost and time effective, and allowing for continuous water consumption analysis via the cloud computing service.


2021 ◽  
Vol 309 ◽  
pp. 01040
Author(s):  
Madala Kranthi ◽  
Velagapudi Sreenivas ◽  
K. Prabhakar ◽  
G. Ramesh

The point of this paper is on DESIGN OF SMART WATER FLOW METER which has gotten a conspicuous subject inside the present mechanical discourse. During this snappy paced lifestyles water providers and customers need to present any other water system which is steadily gainful and also faster digital water meters are adjusted test the degree of water used by private and commercial enterprise structures which are given water through an untamed office device. Thus via using this we are able to retain seeing at the usage of water by way of diverse clients. The essential target is to shape office logically in a position and direct which lessens the manual help, terminate affirm and time gifted response for the incredible water shape. This snappy paced existence water providers and shoppers wishes to introduce some other water gadget which is regularly successful and nearly snappier. Modernized water meters are adjusted examine the proportion of water used by private and business systems which are given water by way of an untamed water device. On this manner by using this we will continue disapproving of the usage of water via various customers. The fundamental purpose is to form water progressively reliable and direct which diminishes the manual help, take a seat back equipped course of motion for the dumbfounding water structure. Aside from created international locations, the water elements in others gift with a sensor that is labored electronically. Throughout this enterprise a node mcu based charging structure is given. That is frequently a structure which prompts a homogenous trouble free office what’s more, charging giving most notable agreement to customers and development in water use survey.


Smart Water ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Youn-Sik Hong ◽  
Chul-Ho Lee

AbstractSmart water meter, which incorporates IoT (Internet of Things) technology, is receiving high attention due to recent development of information and communication technology. If traditional mechanical water meters are replaced by electronic ultrasonic water meters, micro flow rate can be measured and the measurement uncertainty can be improved due to the age of use. This enables smart metering such as AMR (Automatic Meter Reading) or AMI (Advanced Metering Infrastructure) as well as various water related services. In this paper, a low power ultrasonic water meter will be designed to operate with a battery for a long period of time. A water meter shall be designed to operate for at least 9 years, which is the requirement for type approval. In this paper, a low-power modeling is performed for battery-operated ultrasonic water meter to work for at least 10 years. The proposed low power embedded system model will be verified with actual test circuits.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Nelson Pimenta ◽  
Paulo Chaves

AbstractThe reduction of water resources due to climate change and the increasing demand associated with population growth is a renewed concern. Water distribution monitoring and smart metering are essential tools to improve distribution efficiency. This paper reports on the study, design, and implementation of a smart water meter (SWM) prototype, designed for mechanical water meters that need to undergo a retrofitting process to enable automatic metering readings. Metering data is transmitted through innovative narrowband internet of things (NB-IoT) technology with low power, long-range, and effective penetration. A flexible power management design allows the introduction of an energy harvester that recovers energy from the surrounding environment and charges the internal battery. The energy harvesting feasibility was demonstrated with two proof-of-concept configurations, light and water-turbine based. The details on the performance of the proposed solution are presented, including the output voltages and harvested power. Although the energy harvesting technologies have not been integrated yet in commercial SWM applications, the results show that the integration is feasible and, once employed in a controlled environment, it can create business advantages by reducing the size and capacity of the internal batteries, enabling one to reduce the operation cost and mitigate long-term ecological problems associated with the use and disposal of batteries.


Sign in / Sign up

Export Citation Format

Share Document