scholarly journals A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5409 ◽  
Author(s):  
Filip Kveton ◽  
Anna Blsakova ◽  
Lenka Lorencova ◽  
Monika Jerigova ◽  
Dusan Velic ◽  
...  

The study describes development of a glycan biosensor for detection of a tumor-associated antibody. The glycan biosensor is built on an electrochemically activated/oxidized graphene screen-printed electrode (GSPE). Oxygen functionalities were subsequently applied for covalent immobilization of human serum albumin (HSA) as a natural nanoscaffold for covalent immobilization of Thomsen-nouvelle (Tn) antigen (GalNAc-O-Ser/Thr) to be fully available for affinity interaction with its analyte—a tumor-associated antibody. The step by step building process of glycan biosensor development was comprehensively characterized using a battery of techniques (scanning electron microscopy, atomic force microscopy, contact angle measurements, secondary ion mass spectrometry, surface plasmon resonance, Raman and energy-dispersive X-ray spectroscopy). Results suggest that electrochemical oxidation of graphene SPE preferentially oxidizes only the surface of graphene flakes within the graphene SPE. Optimization studies revealed the following optimal parameters: activation potential of +1.5 V vs. Ag/AgCl/3 M KCl, activation time of 60 s and concentration of HSA of 0.1 g L−1. Finally, the glycan biosensor was built up able to selectively and sensitively detect its analyte down to low aM concentration. The binding preference of the glycan biosensor was in an agreement with independent surface plasmon resonance analysis.

Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 102 ◽  
Author(s):  
Richard Schasfoort ◽  
Fikri Abali ◽  
Ivan Stojanovic ◽  
Gestur Vidarsson ◽  
Leon Terstappen

SPR cytometry entails the measurement of parameters from intact cells using the surface plasmon resonance (SPR) phenomenon. Specific real-time and label-free binding of living cells to sensor surfaces has been made possible through the availability of SPR imaging (SPRi) instruments and researchers have started to explore its potential in the last decade. Here we will discuss the mechanisms of detection and additionally describe the problems and issues of mammalian cells in SPR biosensing, both from our own experience and with information from the literature. Finally, we build on the knowledge and applications that has already materialized in this field to give a forecast of some exciting applications for SPRi cytometry.


Author(s):  
Manuel Fuentes ◽  
Sanjeeva Svrivastava ◽  
Nirosahan Ramachandran ◽  
Eugenie Hainsworth ◽  
Josh LaBaer

2010 ◽  
Vol 82 (24) ◽  
pp. 10110-10115 ◽  
Author(s):  
Hana Šípová ◽  
Shile Zhang ◽  
Aimée M. Dudley ◽  
David Galas ◽  
Kai Wang ◽  
...  

Author(s):  
Masixole Y. Lugongolo ◽  
Sello Manoto ◽  
Charles Maphanga ◽  
Saturnin Ombinda-Lemboumba ◽  
Lebogang Thobakgale ◽  
...  

2019 ◽  
Vol 12 (4) ◽  
pp. 1007-1016 ◽  
Author(s):  
Mingfei Pan ◽  
Jingying Yang ◽  
Shijie Li ◽  
Wenjun Wen ◽  
Junping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document