scholarly journals Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2665 ◽  
Author(s):  
Soongho Park ◽  
Juhyung Lee ◽  
Younggue Kim ◽  
Byeong Ha Lee

We propose a nanometer-scale displacement or vibration measurement system, using an optical quadrature interferometer and the post-processing technique that extracts the parameters necessary for characterizing the interferometric system. Using a 3 × 3 fiber-optic coupler, the entire complex interference signal could be reconstructed with two interference signals measured at two return ports of the coupler. The intrinsic phase difference between the return ports was utilized to obtain the quadratic part of the interference signal, which allowed one to reconstruct the entire complex interference signal. However, the two measured signals were appreciably affected by the unequal detector gains and non-uniform intrinsic phases of the coupler. Fortunately, we could find that the Lissajous curve plotted by the two signals of the interferometric system would form an ellipse. Therefore, by fitting the measured Lissajous curve to an ellipse, we could extract the parameters characterizing the actual system, which allowed the nanometer-scale measurement. Experimental results showed that a 20 kHz sinusoidal vibration with an amplitude of 1.5 nm could be measured with a standard deviation of 0.4 nm.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chien-Hsing Chen ◽  
Chih-Yu Hsu ◽  
Pei-Hsing Huang ◽  
Jian-Neng Wang ◽  
Wei-Te Wu

The Mach-Zehnder interferometer (MZI) can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI). Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2528 ◽  
Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes, in addition to immunity to electromagnetic interference and chemical corrosions. Thus, the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within (−6°, 4°), and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


2021 ◽  
Author(s):  
Yunjie Shi ◽  
Mengke Yin ◽  
Zijue Zhu ◽  
Shun Wang ◽  
Panting Niu ◽  
...  

Abstract In the research field of fiber-optic hydrophone, the performance of demodulation scheme is crucial. In this work, a phase-generated-carrier (PGC) demodulation scheme based on high-frequency sound source is proposed. Highfrequency acoustic signal from the external sound source is applied to the fiber-optic hydrophone to achieve phase modulation of the interference signal instead of the piezo-electrical transducer (PZT) or frequency-modulated laser. It possesses the merits of low system complexity and low cost. Through the acoustic detection experiment, we achieve demodulation of acoustic signal at frequency varying from 300 Hz to 800 Hz, and the signal-to-noise ratio (SNR) is higher than 45 dB. Furthermore, the proposed scheme is successfully applied to time division multiplexing (TDM) experiment.


2021 ◽  
Author(s):  
Putha Kishore ◽  
Dantala Dinakar ◽  
Manchineellu Padmavathi

The sensors presented in this chapter are fiber optic intensity modulated vibrations sensors which are non-contact (extrinsic sensor) to the vibrating object. Three sensors presented make use of non-contact vibration measurement method with plastic fiber using distinct designs, improvement of the sensor response and advantages of one sensor over the other for diverse applications. First discussed about dual plastic optical fiber vibration sensor design and its response. Secondly, discussed about 1x2 fused coupler plastic optical fiber vibration sensor design with advantages over the first one. Finally, discussed about the 2x2 fused coupler plastic optical fiber vibration sensor design along with advantages than other two methods. At the end reported the final results with comparison.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Yang ◽  
Yu Fu ◽  
Jianmin Yuan ◽  
Min Guo ◽  
Keyu Yan ◽  
...  

The vibration-based damage identification method extracts the damage location and severity information from the change of modal properties, such as natural frequency and mode shape. Its performance and accuracy depends on the measurement precision. Laser Doppler vibrometer (LDV) provides a noncontact vibration measurement of high quality, but usually it can only do sampling on a single point. Scanning LDV is normally used to obtain the mode shape with a longer scanning time. In this paper, a damage detection technique is proposed using a self-synchronizing multipoint LDV. Multiple laser beams with various frequency shifts are projected on different points of the object, reflected and interfered with a common reference beam. The interference signal containing synchronized temporal vibration information of multiple spatial points is captured by a single photodetector and can be retrieved in a very short period. Experiments are conducted to measure the natural frequencies and mode shapes of pre- and postcrack cantilever beams. Mode shape curvature is calculated by numerical interpolation and windowed Fourier analysis. The results show that the artificial crack can be identified precisely from the change of natural frequencies and the difference of mode shape curvature squares.


1992 ◽  
Vol 10 (7) ◽  
pp. 882-887 ◽  
Author(s):  
A.T. Andreev ◽  
K.P. Panajotov ◽  
B.S. Zafirova
Keyword(s):  
Layer I ◽  

2010 ◽  
Vol 127 (3) ◽  
pp. 1865-1865
Author(s):  
Rupa Gopinath ◽  
Khushali Manseta ◽  
Vasileios Nasis ◽  
Afshin S. Daryoush ◽  
Mahmoud El‐Sherif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document