scholarly journals Wearable Epileptic Seizure Prediction System with Machine-Learning-Based Anomaly Detection of Heart Rate Variability

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3987 ◽  
Author(s):  
Toshitaka Yamakawa ◽  
Miho Miyajima ◽  
Koichi Fujiwara ◽  
Manabu Kano ◽  
Yoko Suzuki ◽  
...  

A warning prior to seizure onset can help improve the quality of life for epilepsy patients. The feasibility of a wearable system for predicting epileptic seizures using anomaly detection based on machine learning is evaluated. An original telemeter is developed for continuous measurement of R-R intervals derived from an electrocardiogram. A bespoke smartphone app calculates the indices of heart rate variability in real time from the R-R intervals, and the indices are monitored using multivariate statistical process control by the smartphone app. The proposed system was evaluated on seven epilepsy patients. The accuracy and reliability of the R-R interval measurement, which was examined in comparison with the reference electrocardiogram, showed sufficient performance for heart rate variability analysis. The results obtained using the proposed system were compared with those obtained using the existing video and electroencephalogram assessments; it was noted that the proposed method has a sensitivity of 85.7% in detecting heart rate variability change prior to seizures. The false positive rate of 0.62 times/h was not significantly different from the healthy controls. The prediction performance and practical advantages of portability and real-time operation are demonstrated in this study.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3235
Author(s):  
Koichi Fujiwara ◽  
Shota Miyatani ◽  
Asuka Goda ◽  
Miho Miyajima ◽  
Tetsuo Sasano ◽  
...  

Heart rate variability, which is the fluctuation of the R-R interval (RRI) in electrocardiograms (ECG), has been widely adopted for autonomous evaluation. Since the HRV features that are extracted from RRI data easily fluctuate when arrhythmia occurs, RRI data with arrhythmia need to be modified appropriately before HRV analysis. In this study, we consider two types of extrasystoles—premature ventricular contraction (PVC) and premature atrial contraction (PAC)—which are types of extrasystoles that occur every day, even in healthy persons who have no cardiovascular diseases. A unified framework for ectopic RRI detection and a modification algorithm that utilizes an autoencoder (AE) type of neural network is proposed. The proposed framework consists of extrasystole occurrence detection from the RRI data and modification, whose targets are PVC and PAC. The RRI data are monitored by means of the AE in real time in the detection phase, and a denoising autoencoder (DAE) modifies the ectopic RRI caused by the detected extrasystole. These are referred to as AE-based extrasystole detection (AED) and DAE-based extrasystole modification (DAEM), respectively. The proposed framework was applied to real RRI data with PVC and PAC. The result showed that AED achieved a sensitivity of 93% and a false positive rate of 0.08 times per hour. The root mean squared error of the modified RRI decreased to 31% in PVC and 73% in PAC from the original RRI data by DAEM. In addition, the proposed framework was validated through application to a clinical epileptic seizure problem, which showed that it correctly suppressed the false positives caused by PVC. Thus, the proposed framework can contribute to realizing accurate HRV-based health monitoring and medical sensing systems.


2018 ◽  
Author(s):  
Michael Lang

BACKGROUND Heart rate variability (HRV) is derived from the series of R-R intervals extracted from an electrocardiographic (ECG) measurement. Ideally all components of the R-R series are the result of sinoatrial node depolarization. However, the actual R-R series are contaminated by outliers due to heart rhythm disturbances such as ectopic beats, which ought to be detected and corrected appropriately before HRV analysis. OBJECTIVE We have introduced a novel, lightweight, and near real-time method to detect and correct anomalies in the R-R series based on the singular spectrum analysis (SSA). This study aimed to assess the performance of the proposed method in terms of (1) detection performance (sensitivity, specificity, and accuracy); (2) root mean square error (RMSE) between the actual N-N series and the approximated outlier-cleaned R-R series; and (3) how it benchmarks against a competitor in terms of the relative RMSE. METHODS A lightweight SSA-based change-point detection procedure, improved through the use of a cumulative sum control chart with adaptive thresholds to reduce detection delays, monitored the series of R-R intervals in real time. Upon detection of an anomaly, the corrupted segment was substituted with the respective outlier-cleaned approximation obtained using recurrent SSA forecasting. Next, N-N intervals from a 5-minute ECG segment were extracted from each of the 18 records in the MIT-BIH Normal Sinus Rhythm Database. Then, for each such series, a number (randomly drawn integer between 1 and 6) of simulated ectopic beats were inserted at random positions within the series and results were averaged over 1000 Monte Carlo runs. Accordingly, 18,000 R-R records corresponding to 5-minute ECG segments were used to assess the detection performance whereas another 180,000 (10,000 for each record) were used to assess the error introduced in the correction step. Overall 198,000 R-R series were used in this study. RESULTS The proposed SSA-based algorithm reliably detected outliers in the R-R series and achieved an overall sensitivity of 96.6%, specificity of 98.4% and accuracy of 98.4%. Furthermore, it compared favorably in terms of discrepancies of the cleaned R-R series compared with the actual N-N series, outperforming an established correction method on average by almost 30%. CONCLUSIONS The proposed algorithm, which leverages the power and versatility of the SSA to both automatically detect and correct artifacts in the R-R series, provides an effective and efficient complementary method and a potential alternative to the current manual-editing gold standard. Other important characteristics of the proposed method include the ability to operate in near real-time, the almost entirely model-free nature of the framework which does not require historical training data, and its overall low computational complexity.


2020 ◽  
Vol 15 (6) ◽  
pp. 896-899
Author(s):  
Reabias de A. Pereira ◽  
José Luiz de B. Alves ◽  
João Henrique da C. Silva ◽  
Matheus da S. Costa ◽  
Alexandre S. Silva

Objective: To evaluate the accuracy of the smartphone application (app) HRV Expert (CardioMood) and a chest strap (H10 Polar) for recording R-R intervals compared with electrocardiogram (ECG). Methods: A total of 31 male recreational runners (age 36.1 [6.3] y) volunteered for this study. R-R intervals were recorded simultaneously by the smartphone app and ECG for 5 minutes to analyze heart-rate variability in both the supine and sitting positions. Time-domain indexes (heart rate, mean R-R, SD of RR intervals, count of successive normal R-R intervals differing by more than 50 ms, percentage of successive normal R-R intervals differing by more than 50 ms, and root mean square of successive differences between normal R-R intervals), frequency-domain indexes (low frequency, normalized low frequency, high frequency, normalized high frequency, low-frequency to high-frequency ratio, and very low frequency), and nonlinear indexes (SD of instantaneous beat-to-beat variability and long-term SD of continuous R-R intervals) were compared by unpaired t test, Pearson correlation, simple linear regression, and Bland–Altman plot to evaluate the agreement between the devices. Results: High similarity with P value varying between .97 and 1.0 in both positions was found. The correlation coefficient of the heart-rate-variability indexes was perfect (r = 1.0; P = .00) for all variables. The constant error, standard error of estimation, and limits of agreement between ECG and the smartphone app were considered small. Conclusion: The smartphone app and chest strap provide excellent ECG compliance for all variables in the time domain, frequency domain, and nonlinear indexes, regardless of the assessed position. Therefore, the smartphone app replaces ECG for any heart-rate-variability analysis in runners.


Sign in / Sign up

Export Citation Format

Share Document