scholarly journals A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4157
Author(s):  
Hung-Yu Chang ◽  
Cheng-Yu Yeh ◽  
Chung-Te Lee ◽  
Chun-Cheng Lin

Many works in recent years have been focused on developing a portable and less expensive system for diagnosing patients with obstructive sleep apnea (OSA), instead of using the inconvenient and expensive polysomnography (PSG). This study proposes a sleep apnea detection system based on a one-dimensional (1D) deep convolutional neural network (CNN) model using the single-lead 1D electrocardiogram (ECG) signals. The proposed CNN model consists of 10 identical CNN-based feature extraction layers, a flattened layer, 4 identical classification layers mainly composed of fully connected networks, and a softmax classification layer. Thirty-five released and thirty-five withheld ECG recordings from the MIT PhysioNet Apnea-ECG Database were applied to train the proposed CNN model and validate its accuracy for the detection of the apnea events. The results show that the proposed model achieves 87.9% accuracy, 92.0% specificity, and 81.1% sensitivity for per-minute apnea detection, and 97.1% accuracy, 100% specificity, and 95.7% sensitivity for per-recording classification. The proposed model improves the accuracy of sleep apnea detection in comparison with several feature-engineering-based and feature-learning-based approaches.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Junming Zhang ◽  
Zhen Tang ◽  
Jinfeng Gao ◽  
Li Lin ◽  
Zhiliang Liu ◽  
...  

Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. Around the world, more and more people are suffering from OSA. Because of the limitation of monitor equipment, many people with OSA remain undetected. Therefore, we propose a sleep-monitoring model based on single-channel electrocardiogram using a convolutional neural network (CNN), which can be used in portable OSA monitor devices. To learn different scale features, the first convolution layer comprises three types of filters. The long short-term memory (LSTM) is used to learn the long-term dependencies such as the OSA transition rules. The softmax function is connected to the final fully connected layer to obtain the final decision. To detect a complete OSA event, the raw ECG signals are segmented by a 10 s overlapping sliding window. The proposed model is trained with the segmented raw signals and is subsequently tested to evaluate its event detection performance. According to experiment analysis, the proposed model exhibits Cohen’s kappa coefficient of 0.92, a sensitivity of 96.1%, a specificity of 96.2%, and an accuracy of 96.1% with respect to the Apnea-ECG dataset. The proposed model is significantly higher than the results from the baseline method. The results prove that our approach could be a useful tool for detecting OSA on the basis of a single-lead ECG.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 129586-129599 ◽  
Author(s):  
Sheikh Shanawaz Mostafa ◽  
Fabio Mendonca ◽  
Antonio G. Ravelo-Garcia ◽  
Gabriel Julia-Serda ◽  
Fernando Morgado-Dias

2019 ◽  
Vol 13 (4) ◽  
pp. 261-266 ◽  
Author(s):  
Hnin Thiri Chaw ◽  
Sinchai Kamolphiwong ◽  
Krongthong Wongsritrang

Sleep apnea is the cessation of airflow at least 10 seconds and it is the type of breathing disorder in which breathing stops at the time of sleeping. The proposed model uses type 4 sleep study which focuses more on portability and the reduction of the signals. The main limitations of type 1 full night polysomnography are time consuming and it requires much space for sleep recording such as sleep lab comparing to type 4 sleep studies. The detection of sleep apnea using deep convolutional neural network model based on SPO2 sensor is the valid alternative for efficient polysomnography and it is portable and cost effective. The total number of samples from SPO2 sensors of 50 patients that is used in this study is 190,000. The performance of the overall accuracy of sleep apnea detection is 91.3085% with the loss rate of 2.3 using cross entropy cost function using deep convolutional neural network.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 510
Author(s):  
Cheng-Yu Yeh ◽  
Hung-Yu Chang ◽  
Jiy-Yao Hu ◽  
Chun-Cheng Lin

A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.


Author(s):  
Satoru Tsuiki ◽  
Takuya Nagaoka ◽  
Tatsuya Fukuda ◽  
Yuki Sakamoto ◽  
Fernanda R. Almeida ◽  
...  

Abstract Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patients with severe OSA based on 2-dimensional images. Methods A deep convolutional neural network was developed (n = 1258; 90%) and tested (n = 131; 10%) using data from 1389 (100%) lateral cephalometric radiographs obtained from individuals diagnosed with severe OSA (n = 867; apnea hypopnea index > 30 events/h sleep) or non-OSA (n = 522; apnea hypopnea index < 5 events/h sleep) at a single center for sleep disorders. Three kinds of data sets were prepared by changing the area of interest using a single image: the original image without any modification (full image), an image containing a facial profile, upper airway, and craniofacial soft/hard tissues (main region), and an image containing part of the occipital region (head only). A radiologist also performed a conventional manual cephalometric analysis of the full image for comparison. Results The sensitivity/specificity was 0.87/0.82 for full image, 0.88/0.75 for main region, 0.71/0.63 for head only, and 0.54/0.80 for the manual analysis. The area under the receiver-operating characteristic curve was the highest for main region 0.92, for full image 0.89, for head only 0.70, and for manual cephalometric analysis 0.75. Conclusions A deep convolutional neural network identified individuals with severe OSA with high accuracy. Future research on this concept using AI and images can be further encouraged when discussing triage of OSA.


Sign in / Sign up

Export Citation Format

Share Document