scholarly journals Sleep apnea detection using deep learning

2019 ◽  
Vol 13 (4) ◽  
pp. 261-266 ◽  
Author(s):  
Hnin Thiri Chaw ◽  
Sinchai Kamolphiwong ◽  
Krongthong Wongsritrang

Sleep apnea is the cessation of airflow at least 10 seconds and it is the type of breathing disorder in which breathing stops at the time of sleeping. The proposed model uses type 4 sleep study which focuses more on portability and the reduction of the signals. The main limitations of type 1 full night polysomnography are time consuming and it requires much space for sleep recording such as sleep lab comparing to type 4 sleep studies. The detection of sleep apnea using deep convolutional neural network model based on SPO2 sensor is the valid alternative for efficient polysomnography and it is portable and cost effective. The total number of samples from SPO2 sensors of 50 patients that is used in this study is 190,000. The performance of the overall accuracy of sleep apnea detection is 91.3085% with the loss rate of 2.3 using cross entropy cost function using deep convolutional neural network.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Author(s):  
Satoru Tsuiki ◽  
Takuya Nagaoka ◽  
Tatsuya Fukuda ◽  
Yuki Sakamoto ◽  
Fernanda R. Almeida ◽  
...  

Abstract Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patients with severe OSA based on 2-dimensional images. Methods A deep convolutional neural network was developed (n = 1258; 90%) and tested (n = 131; 10%) using data from 1389 (100%) lateral cephalometric radiographs obtained from individuals diagnosed with severe OSA (n = 867; apnea hypopnea index > 30 events/h sleep) or non-OSA (n = 522; apnea hypopnea index < 5 events/h sleep) at a single center for sleep disorders. Three kinds of data sets were prepared by changing the area of interest using a single image: the original image without any modification (full image), an image containing a facial profile, upper airway, and craniofacial soft/hard tissues (main region), and an image containing part of the occipital region (head only). A radiologist also performed a conventional manual cephalometric analysis of the full image for comparison. Results The sensitivity/specificity was 0.87/0.82 for full image, 0.88/0.75 for main region, 0.71/0.63 for head only, and 0.54/0.80 for the manual analysis. The area under the receiver-operating characteristic curve was the highest for main region 0.92, for full image 0.89, for head only 0.70, and for manual cephalometric analysis 0.75. Conclusions A deep convolutional neural network identified individuals with severe OSA with high accuracy. Future research on this concept using AI and images can be further encouraged when discussing triage of OSA.


2020 ◽  
Vol 21 (4) ◽  
pp. 625-635
Author(s):  
Anandhakrishnan T ◽  
Jaisakthi S.M Murugaiyan

In this paper, we proposed a plant leaf disease identification model based on a Pretrained deep convolutional neural network (Deep CNN). The Deep CNN model is trained using an open dataset with 10 different classes of tomato leaves We observed that overall architectures which can increase the best performance of the model. The proposed model was trained using different training epochs, batch sizes and dropouts. The Xception has attained maximum accuracy compare with all other approaches. After an extensive simulation, the proposed model achieves classification accuracy better. This accuracy of the proposed work is greater than the accuracy of all other Pretrained approaches. The proposed model is also tested with respect to its consistency and reliability. The set of data used for this work was collected from the plant village dataset, including sick and healthy images. Models for detection of plant disease should predict the disease quickly and accurately in the early stage itself so that a proper precautionary measures can be applied to avoid further spread of the diseases. So, to reduce the main issue about the leaf diseases, we can analyze distinct kinds of deep neural network architectures in this research. From the outcomes, Xception has a constantly improving more to enhance the accuracy by increasing the number of epochs, without any indications of overfitting and decreasein quality. And Xception also generated a fine 99.45% precision in less computing time.


Author(s):  
Rishipal Singh ◽  
Rajneesh Rani ◽  
Aman Kamboj

Fruits classification is one of the influential applications of computer vision. Traditional classification models are trained by considering various features such as color, shape, texture, etc. These features are common for different varieties of the same fruit. Therefore, a new set of features is required to classify the fruits belonging to the same class. In this paper, we have proposed an optimized method to classify intra-class fruits using deep convolutional layers. The proposed architecture is capable of solving the challenges of a commercial tray-based system in the supermarket. As the research in intra-class classification is still in its infancy, there are challenges that have not been tackled. So, the proposed method is specifically designed to overcome the challenges related to intra-class fruits classification. The proposed method showcases an impressive performance for intra-class classification, which is achieved using a few parameters than the existing methods. The proposed model consists of Inception block, Residual connections and various other layers in very precise order. To validate its performance, the proposed method is compared with state-of-the-art models and performs best in terms of accuracy, loss, parameters, and depth.


2021 ◽  
Vol 33 (3) ◽  
pp. 373-385
Author(s):  
Duy Tran Quang ◽  
Sang Hoon Bae

Traffic congestion is one of the most important issues in large cities, and the overall travel speed is an important factor that reflects the traffic status on road networks. This study proposes a hybrid deep convolutional neural network (CNN) method that uses gradient descent optimization algorithms and pooling operations for predicting the short-term traffic congestion index in urban networks based on probe vehicles. First, the input data are collected by the probe vehicles to calculate the traffic congestion index (output label). Then, a CNN that uses gradient descent optimization algorithms and pooling operations is applied to enhance its performance. Finally, the proposed model is chosen on the basis of the R-squared (R2) and root mean square error (RMSE) values. In the best-case scenario, the proposed model achieved an R2 value of 98.7%. In addition, the experiments showed that the proposed model significantly outperforms other algorithms, namely the ordinary least squares (OLS), k-nearest neighbors (KNN), random forest (RF), recurrent neural network (RNN), artificial neural network (ANN), and convolutional long short-term memory (ConvLSTM), in predicting traffic congestion index. Furthermore, using the proposed method, the time-series changes in the traffic congestion status can be reliably visualized for the entire urban network.


Author(s):  
G. D. Praveenkumar ◽  
Dr. R. Nagaraj

In this paper, we introduce a new deep convolutional neural network based extreme learning machine model for the classification task in order to improve the network's performance. The proposed model has two stages: first, the input images are fed into a convolutional neural network layer to extract deep-learned attributes, and then the input is classified using an ELM classifier. The proposed model achieves good recognition accuracy while reducing computational time on both the MNIST and CIFAR-10 benchmark datasets.


Sign in / Sign up

Export Citation Format

Share Document