scholarly journals Using Wearable Sensors and Machine Learning to Automatically Detect Freezing of Gait during a FOG-Provoking Test

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4474 ◽  
Author(s):  
Tal Reches ◽  
Moria Dagan ◽  
Talia Herman ◽  
Eran Gazit ◽  
Natalia A. Gouskova ◽  
...  

Freezing of gait (FOG) is a debilitating motor phenomenon that is common among individuals with advanced Parkinson’s disease. Objective and sensitive measures are needed to better quantify FOG. The present work addresses this need by leveraging wearable devices and machine-learning methods to develop and evaluate automated detection of FOG and quantification of its severity. Seventy-one subjects with FOG completed a FOG-provoking test while wearing three wearable sensors (lower back and each ankle). Subjects were videotaped before (OFF state) and after (ON state) they took their antiparkinsonian medications. Annotations of the videos provided the “ground-truth” for FOG detection. A leave-one-patient-out validation process with a training set of 57 subjects resulted in 84.1% sensitivity, 83.4% specificity, and 85.0% accuracy for FOG detection. Similar results were seen in an independent test set (data from 14 other subjects). Two derived outcomes, percent time frozen and number of FOG episodes, were associated with self-report of FOG. Bother derived-metrics were higher in the OFF state than in the ON state and in the most challenging level of the FOG-provoking test, compared to the least challenging level. These results suggest that this automated machine-learning approach can objectively assess FOG and that its outcomes are responsive to therapeutic interventions.

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Steven J. Skube ◽  
Zhen Hu ◽  
Gyorgy J. Simon ◽  
Elizabeth C. Wick ◽  
Elliot G. Arsoniadis ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178366 ◽  
Author(s):  
Ryan S. McGinnis ◽  
Nikhil Mahadevan ◽  
Yaejin Moon ◽  
Kirsten Seagers ◽  
Nirav Sheth ◽  
...  

2020 ◽  
Author(s):  
Charalambos Themistocleous ◽  
Bronte Ficek ◽  
Kimberly Webster ◽  
Dirk-Bart den Ouden ◽  
Argye E. Hillis ◽  
...  

AbstractBackgroundThe classification of patients with Primary Progressive Aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists.ObjectiveThe aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA.MethodsIn this paper, we present a machine learning model based on Deep Neural Networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as expert clinicians’ classifications.ResultsThe DNN model outperformed the other machine learning models with 80% classification accuracy, providing reliable subtyping of patients with PPA into variants and it even outperformed auditory classification of patients into variants by clinicians.ConclusionsWe show that the combined speech and language markers from connected speech productions provide information about symptoms and variant subtyping in PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick and inexpensive classification of patients with PPA.


Sign in / Sign up

Export Citation Format

Share Document