scholarly journals MAKE-IT—A Lightweight Mutual Authentication and Key Exchange Protocol for Industrial Internet of Things

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5166 ◽  
Author(s):  
Karanjeet Choudhary ◽  
Gurjot Singh Gaba ◽  
Ismail Butun ◽  
Pardeep Kumar

Continuous development of the Industrial Internet of Things (IIoT) has opened up enormous opportunities for the engineers to enhance the efficiency of the machines. Despite the development, many industry administrators still fear to use Internet for operating their machines due to untrusted nature of the communication channel. The utilization of internet for managing industrial operations can be widespread adopted if the authentication of the entities are performed and trust is ensured. The traditional schemes with their inherent security issues and other complexities, cannot be directly deployed to resource constrained network devices. Therefore, we have proposed a strong mutual authentication and secret key exchange protocol to address the vulnerabilities of the existing schemes. We have used various cryptography operations such as hashing, ciphering, and so forth, for providing secure mutual authentication and secret key exchange between different entities to restrict unauthorized access. Performance and security analysis clearly demonstrates that the proposed work is energy efficient (computation and communication inexpensive) and more robust against the attacks in comparison to the traditional schemes.

2021 ◽  
Vol 11 (20) ◽  
pp. 9393
Author(s):  
Shantanu Pal ◽  
Zahra Jadidi

Industrial Internet of Things (IIoT) can be seen as an extension of the Internet of Things (IoT) services and applications to industry with the inclusion of Industry 4.0 that provides automation, reliability, and control in production and manufacturing. IIoT has tremendous potential to accelerate industry automation in many areas, including transportation, manufacturing, automobile, marketing, to name a few places. When the benefits of IIoT are visible, the development of large-scale IIoT systems faces various security challenges resulting in many large-scale cyber-attacks, including fraudulent transactions or damage to critical infrastructure. Moreover, a large number of connected devices over the Internet and resource limitations of the devices (e.g., battery, memory, and processing capability) further pose challenges to the system. The IIoT inherits the insecurities of the traditional communication and networking technologies; however, the IIoT requires further effort to customize the available security solutions with more focus on critical industrial control systems. Several proposals discuss the issue of security, privacy, and trust in IIoT systems, but comprehensive literature considering the several aspects (e.g., users, devices, applications, cascading services, or the emergence of resources) of an IIoT system is missing in the present state of the art IIoT research. In other words, the need for considering a vision for securing an IIoT system with broader security analysis and its potential countermeasures is missing in recent times. To address this issue, in this paper, we provide a comparative analysis of the available security issues present in an IIoT system. We identify a list of security issues comprising logical, technological, and architectural points of view and consider the different IIoT security requirements. We also discuss the available IIoT architectures to examine these security concerns in a systematic way. We show how the functioning of different layers of an IIoT architecture is affected by various security issues and report a list of potential countermeasures against them. This study also presents a list of future research directions towards the development of a large-scale, secure, and trustworthy IIoT system. The study helps understand the various security issues by indicating various threats and attacks present in an IIoT system.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7160
Author(s):  
Imanol Mugarza ◽  
Jose Luis Flores ◽  
Jose Luis Montero

New generation Industrial Automation and Control Systems (IACS) are providing advanced connectivity features, enabling new automation applications, services and business models in the Industrial Internet of Things (IIoT) era. Nevertheless, due to the extended attack surface and increasing number of cyber-attacks against industrial equipment, security concerns arise. Hence, these systems should provide enough protection and resiliency against cyber-attacks throughout their entire lifespan, which, in the case of industrial systems, may last several decades. A sound and complete management of security issues and software updates is fundamental to achieve such goal, since leading-edge security countermeasures implemented in the development phase may eventually become out-of-date. In this article, a review of the IEC 62443 industrial security standard concerning the security maintenance of IIoT systems and components is given, along with guidelines for the implementation of such processes. As concluded, the security issues and software updates management shall jointly be addressed by the asset owner, service providers and product suppliers. These security processes should also be compatible with the safety procedures established by safety standards.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yuting Li ◽  
Qingfeng Cheng ◽  
Wenbo Shi

Internet of Things brings convenience to the social life, at the same time, putting forward higher requirements for the security of data transmission and storage. Security incidents based on industrial Internet of Things have occurred frequently recently, which should be given full consideration. The identity-based authenticated key agreement protocol can solve these security threats to a certain extent. Recently, a lightweight identity-based authenticated key agreement protocol for Industrial Internet of Things, called ID-2PAKA protocol, was claimed to achieve secure authentication and meet security properties. In this paper, we show that the ID-2PAKA protocol is insecure in identity authentication and cannot resisting ephemeral key compromise impersonation attack.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6647
Author(s):  
Soo Fun Tan ◽  
Azman Samsudin

The inherent complexities of Industrial Internet of Things (IIoT) architecture make its security and privacy issues becoming critically challenging. Numerous surveys have been published to review IoT security issues and challenges. The studies gave a general overview of IIoT security threats or a detailed analysis that explicitly focuses on specific technologies. However, recent studies fail to analyze the gap between security requirements of these technologies and their deployed countermeasure in the industry recently. Whether recent industry countermeasure is still adequate to address the security challenges of IIoT environment are questionable. This article presents a comprehensive survey of IIoT security and provides insight into today’s industry countermeasure, current research proposals and ongoing challenges. We classify IIoT technologies into the four-layer security architecture, examine the deployed countermeasure based on CIA+ security requirements, report the deficiencies of today’s countermeasure, and highlight the remaining open issues and challenges. As no single solution can fix the entire IIoT ecosystem, IIoT security architecture with a higher abstraction level using the bottom-up approach is needed. Moving towards a data-centric approach that assures data protection whenever and wherever it goes could potentially solve the challenges of industry deployment.


2011 ◽  
Vol 467-469 ◽  
pp. 640-644
Author(s):  
Yong Ding ◽  
Bin Li ◽  
Zheng Tao Jiang

Affiliation-hiding authenticated key exchange protocol, also called secret handshake, makes two parties from the same organization realize mutual authentication and key agreement via public key certificates without leaking the organization information to any others. Moreover, if the peer involved in the protocol is not from the same group, no any information of the affiliation can be known. In previous secret handshakes protocols, there is a problem which is linkability. That is to say, two activities of the same people can be associated by the attackers. It is not desirable for privacy because the association may deduce it’s affiliation with some other information. In this paper, an unlinkable affiliation-hiding authenticated key exchange protocol is brought out to conquer the linkability. Security analysis is given finally.


2020 ◽  
Vol 10 (6) ◽  
pp. 1962
Author(s):  
Jusop Choi ◽  
Junsung Cho ◽  
Hyoungshick Kim ◽  
Sangwon Hyun

As the number of controllers and devices increases in Industrial Internet of Things (IIoT) applications, it is essential to provide a secure and usable user authentication system for human operators who have to manage tens or hundreds of controllers and devices with his/her password. In this paper, we propose a formally verified certificate-based authentication system using a secondary network device for such IIoT applications. In the proposed system, a user’s sign key is encrypted with a secret key that can be computed with his/her password and a secret parameter in a secondary device to securely protect the sign key. To demonstrate the feasibility of the proposed system, we implemented a prototype with standard cryptographic algorithms (AES-256, RSA-3072, and ECDSA-256). The experiment results demonstrated that the execution time overhead of the sign key recovery process was 0.039 and 0.073 s, respectively, for RSA-3072 and ECDSA-256, which was marginal compared with the total execution time (0.383 s for RSA-3072 and 0.319 s for ECDSA-256) of the conventional system. We also verified the security of the proposed protocol using a formal verification tool called ProVerif.


Sign in / Sign up

Export Citation Format

Share Document