scholarly journals Security Issues and Software Updates Management in the Industrial Internet of Things (IIoT) Era

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7160
Author(s):  
Imanol Mugarza ◽  
Jose Luis Flores ◽  
Jose Luis Montero

New generation Industrial Automation and Control Systems (IACS) are providing advanced connectivity features, enabling new automation applications, services and business models in the Industrial Internet of Things (IIoT) era. Nevertheless, due to the extended attack surface and increasing number of cyber-attacks against industrial equipment, security concerns arise. Hence, these systems should provide enough protection and resiliency against cyber-attacks throughout their entire lifespan, which, in the case of industrial systems, may last several decades. A sound and complete management of security issues and software updates is fundamental to achieve such goal, since leading-edge security countermeasures implemented in the development phase may eventually become out-of-date. In this article, a review of the IEC 62443 industrial security standard concerning the security maintenance of IIoT systems and components is given, along with guidelines for the implementation of such processes. As concluded, the security issues and software updates management shall jointly be addressed by the asset owner, service providers and product suppliers. These security processes should also be compatible with the safety procedures established by safety standards.

2021 ◽  
Vol 11 (20) ◽  
pp. 9393
Author(s):  
Shantanu Pal ◽  
Zahra Jadidi

Industrial Internet of Things (IIoT) can be seen as an extension of the Internet of Things (IoT) services and applications to industry with the inclusion of Industry 4.0 that provides automation, reliability, and control in production and manufacturing. IIoT has tremendous potential to accelerate industry automation in many areas, including transportation, manufacturing, automobile, marketing, to name a few places. When the benefits of IIoT are visible, the development of large-scale IIoT systems faces various security challenges resulting in many large-scale cyber-attacks, including fraudulent transactions or damage to critical infrastructure. Moreover, a large number of connected devices over the Internet and resource limitations of the devices (e.g., battery, memory, and processing capability) further pose challenges to the system. The IIoT inherits the insecurities of the traditional communication and networking technologies; however, the IIoT requires further effort to customize the available security solutions with more focus on critical industrial control systems. Several proposals discuss the issue of security, privacy, and trust in IIoT systems, but comprehensive literature considering the several aspects (e.g., users, devices, applications, cascading services, or the emergence of resources) of an IIoT system is missing in the present state of the art IIoT research. In other words, the need for considering a vision for securing an IIoT system with broader security analysis and its potential countermeasures is missing in recent times. To address this issue, in this paper, we provide a comparative analysis of the available security issues present in an IIoT system. We identify a list of security issues comprising logical, technological, and architectural points of view and consider the different IIoT security requirements. We also discuss the available IIoT architectures to examine these security concerns in a systematic way. We show how the functioning of different layers of an IIoT architecture is affected by various security issues and report a list of potential countermeasures against them. This study also presents a list of future research directions towards the development of a large-scale, secure, and trustworthy IIoT system. The study helps understand the various security issues by indicating various threats and attacks present in an IIoT system.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4393
Author(s):  
JongHyup Lee ◽  
Taekyoung Kwon

The Industrial Internet of Things (IIoT) could enhance automation and analytics in industrial environments. Despite the promising benefits of IIoT, securely managing software updates is a challenging problem for those critical applications. This is due to at least the intrinsic lack of software protection mechanisms in legacy industrial systems. In this paper, to address the challenges in building a secure software supply chain for industrial environments, we propose a new approach that leverages distributed watchdogs with blockchain systems in protecting software supply chains. For this purpose, we bind every entity with a unique identity in the blockchain and employ the blockchain as a delegated authenticator by mapping every reporting action to a non-fungible token transfer. Moreover, we present a detailed specification to clearly define the behavior of systems and to apply model checking.


2018 ◽  
Vol 10 (10) ◽  
pp. 100 ◽  
Author(s):  
Thomas Usländer ◽  
Thomas Batz

The emerging Industrial Internet of Things (IIoT) will not only leverage new and potentially disruptive business models but will also change the way software applications will be analyzed and designed. Agility is a need in a systematic service engineering as well as a co-design of requirements and architectural artefacts. Functional and non-functional requirements of IT users (in smart manufacturing mostly from the disciplines of mechanical engineering and electrical engineering) need to be mapped to the capabilities and interaction patterns of emerging IIoT service platforms, not to forget the corresponding information models. The capabilities of such platforms are usually described, structured, and formalized by software architects and software engineers. However, their technical descriptions are far away from the thinking and the thematic terms of end-users. This complicates the transition from requirements analysis to system design, and hence the re-use of existing and the design of future platform capabilities. Current software engineering methodologies do not systematically cover these interlinked and two-sided aspects. The article describes in a comprehensive manner how to close this gap with the help of a service-oriented analysis and design methodology entitled SERVUS (also mentioned in ISO 19119 Annex D) and a corresponding Web-based Platform Engineering Information System (PEIS).


2016 ◽  
Vol 20 (08) ◽  
pp. 1640015 ◽  
Author(s):  
CHRISTIAN ARNOLD ◽  
DANIEL KIEL ◽  
KAI-INGO VOIGT

The Industrial Internet of Things (IIoT) poses large impacts on business models (BM) of established manufacturing companies within several industries. Thus, this paper aims at analyzing the influence of the IIoT on these BMs with particular respect to differences and similarities dependent on varying industry sectors. For this purpose, we employ an exploratory multiple case study approach based on semi-structured expert interviews in 69 manufacturing companies from the five most important German industries. Owing the lack of previous research, our study contributes to the current state of management literature by revealing the following valuable insights with regard to industry-specific BM changes: The machine and plant engineering companies are mainly facing changing workforce qualifications, the electrical engineering and information and communication technology companies are particularly concerned with the importance of novel key partner networks, and automotive suppliers predominantly exploit IIoT-inherent benefits in terms of an increasing cost efficiency.


2016 ◽  
Vol 20 (08) ◽  
pp. 1640014 ◽  
Author(s):  
SVEN M. LAUDIEN ◽  
BIRGIT DAXBÖCK

The Industrial Internet of Things is recently a widely discussed phenomenon. However, business level effects of this phenomenon are by now underresearched. We tackle this research gap by presenting an in-depth analysis of business model changes manufacturing firms employ to adequately react to this technological development. Against the background of a multiple-case study we identify and characterise three archetypes of business models manufacturing firm implement in order to benefit from opportunities provided by the Industrial Internet of Things. Furthermore, we present insights on how firms innovate their extant business model in this context. Thereby, our study considerably contributes to business model research and additionally bolsters up a strategic firm level perspective on the Industrial Internet of Things.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6647
Author(s):  
Soo Fun Tan ◽  
Azman Samsudin

The inherent complexities of Industrial Internet of Things (IIoT) architecture make its security and privacy issues becoming critically challenging. Numerous surveys have been published to review IoT security issues and challenges. The studies gave a general overview of IIoT security threats or a detailed analysis that explicitly focuses on specific technologies. However, recent studies fail to analyze the gap between security requirements of these technologies and their deployed countermeasure in the industry recently. Whether recent industry countermeasure is still adequate to address the security challenges of IIoT environment are questionable. This article presents a comprehensive survey of IIoT security and provides insight into today’s industry countermeasure, current research proposals and ongoing challenges. We classify IIoT technologies into the four-layer security architecture, examine the deployed countermeasure based on CIA+ security requirements, report the deficiencies of today’s countermeasure, and highlight the remaining open issues and challenges. As no single solution can fix the entire IIoT ecosystem, IIoT security architecture with a higher abstraction level using the bottom-up approach is needed. Moving towards a data-centric approach that assures data protection whenever and wherever it goes could potentially solve the challenges of industry deployment.


Author(s):  
Abdul Alabassi ◽  
Hadis Karimipour ◽  
Amir Namvar jahromi ◽  
Ali Dehghantanha ◽  
Pierluigi Siano ◽  
...  

2019 ◽  
Vol 34 (6) ◽  
pp. 1203-1209 ◽  
Author(s):  
Paul Matthyssens

Purpose Starting from the foundations of value innovation, this paper aims to give an idea of the key drivers and barriers – internal and external to the company – and to provide insight into proven capabilities underscoring the ability to create a flow of new value initiatives. These thoughts are then confronted with the present challenges of Industry 4.0 and the Industrial Internet of Things (IIoT). The confrontation leads to the identification of five capabilities for future-proof value innovation. Design/methodology/approach Literature review based upon the work of the author with more than two decades of experience within value innovation research is included. The review is supplemented with recent literature and an overview of the challenges of Industry 4.0/IIoT, which leads into a confrontation of the present status of value innovation with future requirements. Findings Value innovation remains important specifically for established companies facing path-breaking digital disruption of their existing business models provoked by Industry 4.0 and IIoT. Five key capabilities are suggested to rejuvenate value innovation and prepare it for the Industry 4.0 challenge: capabilities for designing, adapting and marketing product service systems; capabilities for blending digital strategy and processes with value offerings; capabilities for designing and mobilizing ecosystems and integrating these into a value-based IIoT platform; capabilities for combining and integrating technological and value innovation approaches; and capabilities for linking value creation to value capturing. Research limitations/implications This paper is more of a “viewpoint” than an empirically based paper presenting new research findings. It is based on expert judgment and confrontation with extant literature. The outlook indicating five key capabilities needs further empirical corroboration. Practical implications The overview of barriers and the “toolkit” for value innovation (Figure 1) and the five capabilities for future value innovation are expected to be managerially relevant. Originality/value The paper highlights the concept of value innovation, as discussed over the past decades, and links it to recent challenges and opportunities imposed by Industry 4.0 and the IIoT. The concept of value or strategic innovation is still valid but needs a re-conceptualization in view of these developments. The paper provides five capabilities business marketers should develop to perform value innovation in an Industry 4.0 environment.


Sign in / Sign up

Export Citation Format

Share Document