scholarly journals Monitoring of Corroded and Loosened Bolts in Steel Structures via Deep Learning and Hough Transforms

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6888
Author(s):  
Quoc-Bao Ta ◽  
Jeong-Tae Kim

In this study, a regional convolutional neural network (RCNN)-based deep learning and Hough line transform (HLT) algorithm are applied to monitor corroded and loosened bolts in steel structures. The monitoring goals are to detect rusted bolts distinguished from non-corroded ones and also to estimate bolt-loosening angles of the identified bolts. The following approaches are performed to achieve the goals. Firstly, a RCNN-based autonomous bolt detection scheme is designed to identify corroded and clean bolts in a captured image. Secondly, a HLT-based image processing algorithm is designed to estimate rotational angles (i.e., bolt-loosening) of cropped bolts. Finally, the accuracy of the proposed framework is experimentally evaluated under various capture distances, perspective distortions, and light intensities. The lab-scale monitoring results indicate that the suggested method accurately acquires rusted bolts for images captured under perspective distortion angles less than 15° and light intensities larger than 63 lux.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Navid Moshtaghi Yazdani

In the present paper, a method for reliable estimation of defect profile in CK45 steel structures is presented using an eddy current testing based measurement system and post-processing system based on deep learning technique. So a deep learning method is used to determine the defect characteristics in metallic structures by magnetic field C-scan images obtained by an anisotropic magneto-resistive sensor. Having designed and adjusting the deep convolution neural network and applied it to C-scan images obtained from the measurement system, the performance of deep learning method proposed is compared with conventional artificial neural network methods such as multilayer perceptron and radial basis function on a number of metallic specimens with different defects. The results confirm the superiority of the proposed method for characterizing defects compared to other classical training-oriented methods.


Author(s):  
Sumit Sharma ◽  
Rajan Kumar Dudeja ◽  
Gagangeet Singh Aujla ◽  
Rasmeet Singh Bali ◽  
Neeraj Kumar

Abstract Healthcare 4.0 paradigm aims at realization of data-driven and patient-centric health systems wherein advanced sensors can be deployed to provide personalized assistance. Hence, extreme mentally affected patients from diseases like Alzheimer can be assisted using sophisticated algorithms and enabling technologies. Motivated from this fact, in this paper, DeTrAs: Deep Learning-based Internet of Health Framework for the Assistance of Alzheimer Patients is proposed. DeTrAs works in three phases: (1) A recurrent neural network-based Alzheimer prediction scheme is proposed which uses sensory movement data, (2) an ensemble approach for abnormality tracking for Alzheimer patients is designed which comprises two parts: (a) convolutional neural network-based emotion detection scheme and (b) timestamp window-based natural language processing scheme, and (3) an IoT-based assistance mechanism for the Alzheimer patients is also presented. The evaluation of DeTrAs depicts almost 10–20% improvement in terms of accuracy in contrast to the different existing machine learning algorithms.


2021 ◽  
Author(s):  
Anjir Ahmed Chowdhury ◽  
Argho Das ◽  
Debajyoti Karmaker

Abstract As soon as coins or money was invented, there were people trying to make counterfeits. Counterfeit money is fake money that is produced without the permission of the state or government, usually to imitate the currency and deceive the intended recipient. In Bangladesh, this is a significant problem and the problem is becoming more and more phenomenon as the days are passing by. Today’s modern bank notes have several security features that makes easier to identify fake notes. One of the security features is the use of UV ink. Bank notes deliberately put random flecks of color scattered all over the surface of the money - which acts as a extra layer of protection against counterfeiters. We propose an automatic authentication model for identifying counterfeit money based on these random flecks of color which is visible under UV light. To obtain a benchmark result, existing object detection pre-trained models were used, followed by MobileNet, Inception, ResNet50, ResNet101, and Inception-ResNet architectures. After that, using the Region Proposal Network (RPN) method with Convolutional Neural Network (CNN) based classification the optimal model was proposed. The proposed model had a 96.3 percent accuracy. It is critical to reduce the circulation of counterfeit money in a country’s economy to stop inflation. This study will aid in the detection of counterfeit money and, hopefully, reduce its spread.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document