scholarly journals Field-Based Calibration of Unmanned Aerial Vehicle Thermal Infrared Imagery with Temperature-Controlled References

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7098
Author(s):  
Xiongzhe Han ◽  
J. Alex Thomasson ◽  
Vaishali Swaminathan ◽  
Tianyi Wang ◽  
Jeffrey Siegfried ◽  
...  

Accurate and reliable calibration methods are required when applying unmanned aerial vehicle (UAV)-based thermal remote sensing in precision agriculture for crop stress monitoring, irrigation planning, and harvesting. The primary objective of this study was to improve the calibration accuracies of UAV-based thermal images using temperature-controlled ground references. Two temperature-controlled ground references were installed in the field to serve as high- and low-temperature references, approximately spanning the expected range of crop surface temperatures during the growing season. Our results showed that the proposed method using temperature-controlled references was able to reduce errors due to ambient conditions from 9.29 to 1.68 °C, when tested with validation panels. There was a significant improvement in crop temperature estimation from the thermal image mosaic, as the error reduced from 14.0 °C in the un-calibrated image to 1.01 °C in the calibrated image. Furthermore, a multiple linear regression model (R2 = 0.78; p-value < 0.001; relative RMSE = 2.42%) was established to quantify soil moisture content based on canopy surface temperature and soil type, using UAV-based thermal image data and soil electrical conductivity (ECa) data as the predictor variables.

2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.


2013 ◽  
Vol 15 (1) ◽  
pp. 44-56 ◽  
Author(s):  
D. Gómez-Candón ◽  
A. I. De Castro ◽  
F. López-Granados

2020 ◽  
Vol 8 (1) ◽  
pp. 91-99
Author(s):  
Dita Khairunnisa ◽  
Mochtar Lutfi Rayes ◽  
Christanti Agustina

PT Great Giant Pineapple (PT. GGP) is the largest pineapple production company in Indonesia. One of the nutrients that pineapple plants really need is potassium (K). K plays a key role in carbohydrate metabolism and transport of photosynthates from source to sink. Remote sensing technology has been developed to estimate nutrient status, one of which is using an Unmanned Aerial Vehicle (UAV). This study aims to estimate the K nutrient content in pineapple plants using vegetation indexes in the form of NDVI (Normalyzed Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and OSAVI (Optimized of Soil Adjusted Vegetation Index). The research was carried out by taking aerial photographs and samples of pineapple plants in the 5 months phase before forcing up to 2 months after forcing (F-5 to F + 2), laboratory analysis, statistical analysis, and making distribution maps. The results showed that the relationship between the vegetation index value and K plant was the strongest and most significant is in 1 month before forcing phase (F-1) with the same r value for the three indices vegetation (r=0.867). The results of the regression analysis between the NDVI, SAVI and OSAVI values with K plant were 75.17%, 75.18% and 75.17%, respectively. The calculation of the K estimate using three methods yields no different values. The validation results using paired t test (t count -0.63; t table 2.31; p-value 0.544) where the K content in the measured plants and the estimation results showed no significant difference with the measurement results.


2012 ◽  
Vol 13 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Jacopo Primicerio ◽  
Salvatore Filippo Di Gennaro ◽  
Edoardo Fiorillo ◽  
Lorenzo Genesio ◽  
Emanuele Lugato ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Anjin Chang ◽  
Jinha Jung ◽  
Murilo M. Maeda ◽  
Juan A. Landivar ◽  
Henrique D. R. Carvalho ◽  
...  

Canopy temperature is an important variable directly linked to a plant’s water status. Recent advances in Unmanned Aerial Vehicle (UAV) and sensor technology provides a great opportunity to obtain high-quality imagery for crop monitoring and high-throughput phenotyping (HTP) applications. In this study, a UAV-based thermal system was developed to directly measure canopy temperature, skipping the traditional radiometric calibration process which is time-consuming and complicates data processing. Raw thermal imagery collected over a cotton field was converted to surface temperature using the Software Development Kit (SDK) provided by the sensor company. Canopy temperature map was generated using Structure from Motion (SfM), and Thermal Stress Index (TSI) was calculated for the test site. UAV temperature measurements were compared to ground measurements acquired by net radiometers and thermocouples. Temperature differences between UAV and ground measurements were less than 5%, and UAV measurements proved to be more stable. The proposed UAV system was successful in showing temperature differences between the cotton genotype. In conclusion, the system described in this study could possibly be used to monitor crop water status in a field setting, which should prove helpful for precision agriculture and crop research.


Sign in / Sign up

Export Citation Format

Share Document