scholarly journals Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 115
Author(s):  
João Mouro ◽  
Rui Pinto ◽  
Paolo Paoletti ◽  
Bruno Tiribilli

A microcantilever is a suspended micro-scale beam structure supported at one end which can bend and/or vibrate when subjected to a load. Microcantilevers are one of the most fundamental miniaturized devices used in microelectromechanical systems and are ubiquitous in sensing, imaging, time reference, and biological/biomedical applications. They are typically built using micro and nanofabrication techniques derived from the microelectronics industry and can involve microelectronics-related materials, polymeric materials, and biological materials. This work presents a comprehensive review of the rich dynamical response of a microcantilever and how it has been used for measuring the mass and rheological properties of Newtonian/non-Newtonian fluids in real time, in ever-decreasing space and time scales, and with unprecedented resolution.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 924
Author(s):  
Alexander B. Shcherbakov ◽  
Vladimir V. Reukov ◽  
Alexander V. Yakimansky ◽  
Elena L. Krasnopeeva ◽  
Olga S. Ivanova ◽  
...  

The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?


2001 ◽  
Author(s):  
Vijay K. Varadan

Abstract The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sizes now down at the sub micron level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and MicroElectroMechanical Systems (MEMS). This effort offers the promise of: 1. Increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed for the IC and microelectronics industry. Examples include micro stereo lithographic and micro molding techniques. 2. Developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines. 3. Development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation. 4. Development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems.


2019 ◽  
Vol 30 (12) ◽  
pp. 2932-2953 ◽  
Author(s):  
Sarita S. Nair ◽  
Sujeet K. Mishra ◽  
Devendra Kumar

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2908 ◽  
Author(s):  
Yongzhao Xu ◽  
Xiduo Hu ◽  
Sudip Kundu ◽  
Anindya Nag ◽  
Nasrin Afsarimanesh ◽  
...  

The paper highlights some of the significant works done in the field of medical and biomedical sensing using silicon-based technology. The use of silicon sensors is one of the pivotal and prolonged techniques employed in a range of healthcare, industrial and environmental applications by virtue of its distinct advantages over other counterparts in Microelectromechanical systems (MEMS) technology. Among them, the sensors for biomedical applications are one of the most significant ones, which not only assist in improving the quality of human life but also help in the field of microfabrication by imparting knowledge about how to develop enhanced multifunctional sensing prototypes. The paper emphasises the use of silicon, in different forms, to fabricate electrodes and substrates for the sensors that are to be used for biomedical sensing. The electrical conductivity and the mechanical flexibility of silicon vary to a large extent depending on its use in developing prototypes. The article also explains some of the bottlenecks that need to be dealt with in the current scenario, along with some possible remedies. Finally, a brief market survey is given to estimate a probable increase in the usage of silicon in developing a variety of biomedical prototypes in the upcoming years.


2015 ◽  
Vol 81 ◽  
pp. 877-890 ◽  
Author(s):  
Kashif Mahmood ◽  
Khalid Mahmood Zia ◽  
Mohammad Zuber ◽  
Mahwish Salman ◽  
Muhammad Naveed Anjum

Sign in / Sign up

Export Citation Format

Share Document