scholarly journals Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 274
Author(s):  
Maha Elouni ◽  
Hossam M. Abdelghaffar ◽  
Hesham A. Rakha

This paper compares the operation of a decentralized Nash bargaining traffic signal controller (DNB) to the operation of state-of-the-art adaptive and gating traffic signal control. Perimeter control (gating), based on the network fundamental diagram (NFD), was applied on the borders of a protected urban network (PN) to prevent and/or disperse traffic congestion. The operation of gating control and local adaptive controllers was compared to the operation of the developed DNB traffic signal controller. The controllers were implemented and their performance assessed on a grid network in the INTEGRATION microscopic simulation software. The results show that the DNB controller, although not designed to solve perimeter control problems, successfully prevents congestion from building inside the PN and improves the performance of the entire network. Specifically, the DNB controller outperforms both gating and non-gating controllers, with reductions in the average travel time ranging between 21% and 41%, total delay ranging between 40% and 55%, and emission levels/fuel consumption ranging between 12% and 20%. The results demonstrate statistically significant benefits of using the developed DNB controller over other state-of-the-art centralized and decentralized gating/adaptive traffic signal controllers.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Li ◽  
Lijie Yu ◽  
Siran Tao ◽  
Kuanmin Chen

For the purpose of improving the efficiency of traffic signal control for isolate intersection under oversaturated conditions, a multi-objective optimization algorithm for traffic signal control is proposed. Throughput maximum and average queue ratio minimum are selected as the optimization objectives of the traffic signal control under oversaturated condition. A simulation environment using VISSIM SCAPI was utilized to evaluate the convergence and the optimization results under various settings and traffic conditions. It is written by C++/CRL to connect the simulation software VISSIM and the proposed algorithm. The simulation results indicated that the signal timing plan generated by the proposed algorithm has good efficiency in managing the traffic flow at oversaturated intersection than the commonly utilized signal timing optimization software Synchro. The update frequency applied in the simulation environment was 120 s, and it can meet the requirements of signal timing plan update in real filed. Thus, the proposed algorithm has the capability of searching Pareto front of the multi-objective problem domain under both normal condition and over-saturated condition.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Syed Shah Sultan Mohiuddin Qadri ◽  
Mahmut Ali Gökçe ◽  
Erdinç Öner

Abstract Introduction Due to the menacing increase in the number of vehicles on a daily basis, abating road congestion is becoming a key challenge these years. To cope-up with the prevailing traffic scenarios and to meet the ever-increasing demand for traffic, the urban transportation system needs effective solution methodologies. Changes made in the urban infrastructure will take years, sometimes may not even be feasible. For this reason, traffic signal timing (TST) optimization is one of the fastest and most economical ways to curtail congestion at the intersections and improve traffic flow in the urban network. Purpose Researchers have been working on using a variety of approaches along with the exploitation of technology to improve TST. This article is intended to analyze the recent literature published between January 2015 and January 2020 for the computational intelligence (CI) based simulation approaches and CI-based approaches for optimizing TST and Traffic Signal Control (TSC) systems, provide insights, research gaps and possible directions for future work for researchers interested in the field. Methods In analyzing the complex dynamic behavior of traffic streams, simulation tools have a prominent place. Nowadays, microsimulation tools are frequently used in TST related researches. For this reason, a critical review of some of the widely used microsimulation packages is provided in this paper. Conclusion Our review also shows that approximately 77% of the papers included, utilizes a microsimulation tool in some form. Therefore, it seems useful to include a review, categorization, and comparison of the most commonly used microsimulation tools for future work. We conclude by providing insights into the future of research in these areas.


2020 ◽  
Vol 32 (2) ◽  
pp. 229-236
Author(s):  
Songhang Chen ◽  
Dan Zhang ◽  
Fenghua Zhu

Regional Traffic Signal Control (RTSC) is believed to be a promising approach to alleviate urban traffic congestion. However, the current ecology of RTSC platforms is too closed to meet the needs of urban development, which has also seriously affected their own development. Therefore, the paper proposes virtualizing the traffic signal control devices to create software-defined RTSC systems, which can provide a better innovation platform for coordinated control of urban transportation. The novel architecture for RTSC is presented in detail, and microscopic traffic simulation experiments are designed and conducted to verify the feasibility.


2014 ◽  
Vol 543-547 ◽  
pp. 1417-1422
Author(s):  
Wei Li ◽  
Xin Bi ◽  
Yun Xia Cao ◽  
Jin Song Du

Traffic congestion is a major concern for many cities throughout the world. Developing a sophisticated traffic monitoring and control system would result in an effective solution to this problem. In order to reduce traffic delay, a novel urban arterial traffic signal coordinated control method is presented. The total delay of downstream and upstream vehicles is considered and the function describing the relationship between vehicles delay and signal offset among intersections is established. Finally, comparing the performance of traffic signal under method proposed in this paper with the traditional isolated traffic signal control method, the microscopic simulation results show that the method proposed in this paper has better performance in the aspect of reducing the vehicles delay. The offset model is tested in a simulation environment consisting of a core area of three intersections. It can be concluded that the proposed method is much more effective in relieving oversaturation in a network than the isolated intersection control strategy.


Author(s):  
Isaac K. Isukapati ◽  
Hana Rudová ◽  
Gregory J. Barlow ◽  
Stephen F. Smith

Transit vehicles create special challenges for urban traffic signal control. Signal timing plans are typically designed for the flow of passenger vehicles, but transit vehicles—with frequent stops and uncertain dwell times—may have different flow patterns that fail to match those plans. Transit vehicles stopping on urban streets can also restrict or block other traffic on the road. This situation results in increased overall wait times and delays throughout the system for transit vehicles and other traffic. Transit signal priority (TSP) systems are often used to mitigate some of these issues, primarily by addressing delay to the transit vehicles. However, existing TSP strategies give unconditional priority to transit vehicles, exacerbating quality of service for other modes. In networks for which transit vehicles have significant effects on traffic congestion, particularly urban areas, the use of more-realistic models of transit behavior in adaptive traffic signal control could reduce delay for all modes. Estimating the arrival time of a transit vehicle at an intersection requires an accurate model of dwell times at transit stops. As a first step toward developing a model for predicting bus arrival times, this paper analyzes trends in automatic vehicle location data collected over 2 years and allows several inferences to be drawn about the statistical nature of dwell times, particularly for use in real-time control and TSP. On the basis of this trend analysis, the authors argue that an effective predictive dwell time distribution model must treat independent variables as random or stochastic regressors.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 280
Author(s):  
Yanjun Shi ◽  
Yuhan Qi ◽  
Lingling Lv ◽  
Donglin Liang

Nowadays, traffic congestion has become a significant challenge in urban areas and densely populated cities. Real-time traffic signal control is an effective method to reduce traffic jams. This paper proposes a particle swarm optimisation with linearly decreasing weight (LDW-PSO) to tackle the signal intersection control problem, where a finite-interval model and an objective function are built to minimise spoilage time. The performance was evaluated in real-time simulation imitating a crowded intersection in Dalian city (in China) via the SUMO traffic simulator. The simulation results showed that the LDW-PSO outperformed the classical algorithms in this research, where queue length can be reduced by up to 20.4% and average waiting time can be reduced by up to 17.9%.


2021 ◽  
Author(s):  
Maxim Friesen ◽  
Tian Tan ◽  
Jürgen Jasperneite ◽  
Jie Wang

Increasing traffic congestion leads to significant costs associated by additional travel delays, whereby poorly configured signaled intersections are a common bottleneck and root cause. Traditional traffic signal control (TSC) systems employ rule-based or heuristic methods to decide signal timings, while adaptive TSC solutions utilize a traffic-actuated control logic to increase their adaptability to real-time traffic changes. However, such systems are expensive to deploy and are often not flexible enough to adequately adapt to the volatility of today's traffic dynamics. More recently, this problem became a frontier topic in the domain of deep reinforcement learning (DRL) and enabled the development of multi-agent DRL approaches that could operate in environments with several agents present, such as traffic systems with multiple signaled intersections. However, most of these proposed approaches were validated using artificial traffic grids. This paper therefore presents a case study, where real-world traffic data from the town of Lemgo in Germany is used to create a realistic road model within VISSIM. A multi-agent DRL setup, comprising multiple independent deep Q-networks, is applied to the simulated traffic network. Traditional rule-based signal controls, currently employed in the real world at the studied intersections, are integrated in the traffic model with LISA+ and serve as a performance baseline. Our performance evaluation indicates a significant reduction of traffic congestion when using the RL-based signal control policy over the conventional TSC approach in LISA+. Consequently, this paper reinforces the applicability of RL concepts in the domain of TSC engineering by employing a highly realistic traffic model.


Sign in / Sign up

Export Citation Format

Share Document