scholarly journals Application of Building Information Modelling (BIM) in the Health Monitoring and Maintenance Process: A Systematic Review

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 837
Author(s):  
Reihane Shafie Panah ◽  
Mahdi Kioumarsi

Improvements in the science of health monitoring and maintenance have facilitated the observation of damage and defects in existing structures and infrastructures, such as bridges and railways. The need to extend sensing technology through the use of wireless sensors as well as the lack of description tools for understanding, visualizing, and documenting sensor outputs has encouraged researchers to use powerful tools such as Building Information Modelling (BIM) systems. BIM has become important because of conducting tools widely used in the Architecture, Engineering, and Construction (AEC) industry to present and manage information on structural systems and situations. Since combining health monitoring and maintenance results with BIM models is a new field of study, and most projects utilize various aspects of it, we have conducted a review of important work related to this subject published from 2010 to November of 2020. After reviewing 278 journal articles, research trends, approaches, methods, gaps, and future agenda related to BIM in monitoring and maintenance were highlighted. This paper, through a bibliometric and content analysis, concludes that besides main improvements, some limitations now exist which affect the modeling and maintenance process. These limitations are related to extending the IFC schema, optimizing sensor data, interoperability among various BIM platforms, optimization of various sensing technologies for fault detection and management of huge amounts of data, besides consideration of environmental effects on monitoring hazards and underground objects. Finally, this paper aims to help to solve the mentioned limitation through a comprehensive review of existing research.

Author(s):  
Hélder S. Sousa ◽  
Carmen Sguazzo ◽  
Manuel Cabaleiro

<p>Building Information Modelling (BIM) has been increasingly expanding its application to different fields of civil engineering and Historic building information modelling (HBIM) is an example of that. Although, the concept has already drawn the attention of several researchers, there are still many limitations to a full and holistic process that may take HBIM to the same level of applicability that BIM used for new construction has.</p><p>Traditionally, assessment of existing structures, specially heritage structures, begin with the documentation of all important information dealing with the history, characteristics, type, material, uses and applied techniques, among other relevant information that may be retrieved by different sources. Further on, a geometrical survey accompanied with visual inspection and non or semi destructive testing leads to the geometry definition of the structure and to its condition (damage/defects) mapping. All of this information, must be analysed for consequent structural assessment and after stored in a proper database in order to monitor the condition change of the structure along time.</p><p>This paper, presents a framework for use of BIM in rehabilitation and assessment of the built heritage, based on the review of recent works, as to allow a better understanding of the potential for the management of important and significant structures. The paper deals with the dilemma of bringing what a “traditional” assessment can see to how intangible information may be applied.</p>


Author(s):  
E. Karachaliou ◽  
E. Georgiou ◽  
D. Psaltis ◽  
E. Stylianidis

<p><strong>Abstract.</strong> Preventive actions of cultural heritage continuously emerge in order to preserve the identity of the respective civilizations, retain its cultural significance and ensure its accessibility to present and future generations. 3D geomatics technologies along with UAV systems are widely used for documenting existing structures especially in difficult-to-access areas. In addition, Building Information Modelling (BIM) for cultural heritage gains ground towards the sustainable management, update and maintenance of the information. To this context, the current work generates a Historic Building Information Modelling (HBIM) model of the “Averof’s Museum of Neohellenic art” located in Metsovo, Greece, by using UAV photogrammetry techniques and additional information derived from the architecture designs of the buildings.</p>


Buildings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 131 ◽  
Author(s):  
Michael O’Shea ◽  
Jimmy Murphy

The advent of wireless sensors and internet of things connectivity combined with increased open source cloud based digital sharing among the architecture, engineering, and construction industry has helped expand the range of applications for building information modelling. As the rate of adoption of BIM as a standard practice for planning, designing, and constructing new infrastructure increases, the research focus is moving towards other applications. Utilizing BIM in innovative ways such as for building energy performance, carbon capture, and asset management are now being explored. An area which receives less focus is the application of BIM on existing structures. This study explores the potential for implementing BIM on an existing structure for asset management and structural health monitoring. A method of integrating sensors to enhance the visualisation of structural health monitoring through BIM is developed. The study describes how monitoring data can be integrated within the BIM of an offshore lighthouse.


2020 ◽  
Vol 8 (1) ◽  
pp. 4-17
Author(s):  
Nor Akmal Mohamad ◽  
Madihah Khalid

Building information modelling (BIM) is one of the new technologies being used in architectural and constructions projects. At present, BIM curricula are being taught in many Malaysian higher learning institutions, including at the certificate level in community colleges. Even though many studies have investigated behavioural intention to adopt BIM in the industrial setting, studies on the intention to use BIM among students during their training or learning have not received the same level of attention. This study, therefore, investigated the extent to which community college students are willing to accept and use BIM. Factors that influenced their behavioural intention to use BIM, as well as the relationship between the factors and intention to use were also examined. The Technology Acceptance Model (TAM) was used as the theoretical framework to guide the research, where students’ behavioural intention to use BIM was explained through their perceptions of its usefulness and ease of use, as well as their attitude towards BIM utilization in the classroom. A total of 144 community college students enrolled in the architecture programmes in Malaysia were selected as the sample using convenience sampling. The findings show that the students’ behavioural intention to adopt BIM is high. They also perceive BIM as useful and easy to use, and their attitude towards BIM usage appears to be positive. The regression model produced an adjusted R-squared value of 0.790 indicating that 79% of the total variance in the students’ intention to use BIM can be explained by the three independent variables, i.e., perceived usefulness, ease of use, and attitude. Keywords: Building information modelling, perceived usefulness, perceived ease of use, attitude, intention to use, behavioural intention, Technology Acceptance Model


Sign in / Sign up

Export Citation Format

Share Document