scholarly journals Lightweight Digital Certificate Management and Efficacious Symmetric Cryptographic Mechanism over Industrial Internet of Things

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2810
Author(s):  
Adel A. Ahmed

The certificate authority, a trusted entity, issues digital certificates which contain identity credentials to help Industrial Internet of Things (IIoT) devices to represent their authenticity in a secure means. The crucial challenge of a digital certificate is to how design a secure certification authority management system that can counteract cyberattacks on the IIoT network. Moreover, current IIoT systems are not capable of implementing complex mathematical operations due to their constrained power capacity and processing capability. This paper proposes an effective, secure symmetric cryptographic mechanism (ESSC) based on the certificate authority management and Elliptic Curve Diffie Hellman (ECDH) to share a digital certificate among IIoT devices. The proposed certificate authority is used to securely exchange the shared secret key and to resolve the problem of spoofing attacks that may be used to impersonate the identity of the certificate authority. Also, ESSC uses the shared secret key to encrypt the sensitive data during transmission through the insecure communication channel. This research studies the adversary model for ESSC on IIoT and analyzes the cybersecurity of ESSC in the random oracle model. The findings that result from the experiments show that ESSC outperforms the baseline in terms of communication, computation, and storage costs. ESSC thus provides an adequate lightweight digital certificate management and cryptographic scheme which can help in the detection and prevention of several cyberattacks that can harm IIoT networks.

2020 ◽  
Vol 10 (6) ◽  
pp. 1962
Author(s):  
Jusop Choi ◽  
Junsung Cho ◽  
Hyoungshick Kim ◽  
Sangwon Hyun

As the number of controllers and devices increases in Industrial Internet of Things (IIoT) applications, it is essential to provide a secure and usable user authentication system for human operators who have to manage tens or hundreds of controllers and devices with his/her password. In this paper, we propose a formally verified certificate-based authentication system using a secondary network device for such IIoT applications. In the proposed system, a user’s sign key is encrypted with a secret key that can be computed with his/her password and a secret parameter in a secondary device to securely protect the sign key. To demonstrate the feasibility of the proposed system, we implemented a prototype with standard cryptographic algorithms (AES-256, RSA-3072, and ECDSA-256). The experiment results demonstrated that the execution time overhead of the sign key recovery process was 0.039 and 0.073 s, respectively, for RSA-3072 and ECDSA-256, which was marginal compared with the total execution time (0.383 s for RSA-3072 and 0.319 s for ECDSA-256) of the conventional system. We also verified the security of the proposed protocol using a formal verification tool called ProVerif.


2019 ◽  
Vol 9 (10) ◽  
pp. 2058 ◽  
Author(s):  
Yongjun Ren ◽  
Fujian Zhu ◽  
Jian Qi ◽  
Jin Wang ◽  
Arun Kumar Sangaiah

Edge computing provides a unified platform for computing, networking, and storage resources, enabling data to be processed in a timely and efficient manner near the source. Thus, it has become the basic platform for industrial Internet of things (IIoT). However, computing′s unique features have also introduced new security problems. To solve the problem, in this paper, blockchain-based identity management combining access control mechanism is designed under edge computing. The self-certified cryptography is utilized to realize the registration and authentication of network entities. We bind the generated implicit certificate to its identity and construct the identity and certificate management mechanism based on blockchain. Secondly, an access control mechanism based on Bloom filter is designed and integrated with identity management. Moreover, for secure communication in resource-constrained edge devices, a lightweight secret key agreement protocol based on self-authenticated public key is constructed. These mechanisms work together to provide data security guarantees for IIoT such as authentication, auditability, and confidentiality.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5166 ◽  
Author(s):  
Karanjeet Choudhary ◽  
Gurjot Singh Gaba ◽  
Ismail Butun ◽  
Pardeep Kumar

Continuous development of the Industrial Internet of Things (IIoT) has opened up enormous opportunities for the engineers to enhance the efficiency of the machines. Despite the development, many industry administrators still fear to use Internet for operating their machines due to untrusted nature of the communication channel. The utilization of internet for managing industrial operations can be widespread adopted if the authentication of the entities are performed and trust is ensured. The traditional schemes with their inherent security issues and other complexities, cannot be directly deployed to resource constrained network devices. Therefore, we have proposed a strong mutual authentication and secret key exchange protocol to address the vulnerabilities of the existing schemes. We have used various cryptography operations such as hashing, ciphering, and so forth, for providing secure mutual authentication and secret key exchange between different entities to restrict unauthorized access. Performance and security analysis clearly demonstrates that the proposed work is energy efficient (computation and communication inexpensive) and more robust against the attacks in comparison to the traditional schemes.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


2021 ◽  
Vol 173 ◽  
pp. 150-159
Author(s):  
Keming Mao ◽  
Gautam Srivastava ◽  
Reza M. Parizi ◽  
Mohammad S. Khan

Sign in / Sign up

Export Citation Format

Share Document