scholarly journals Data Delivery in a Disaster or Quarantined Area Divided into Triangles Using DTN-Based Algorithms for Unmanned Aerial Vehicles

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3572
Author(s):  
Razvan Udroiu ◽  
Adrian Marius Deaconu ◽  
Corina-Ştefania Nanau

The communication in quarantined areas, e.g., due to the new COVID-19 pandemic, between isolated areas and in areas with technical damage has resulted in a great deal of interest concerning the safety of the population. A new method for ensuring communication between different areas, using unmanned aerial vehicle (UAV) networks with a well-established mobility schedule is proposed. UAVs fly based on a mission plan using regular polygons covering an area from a map. The area is considered to be equidistantly covered with points, grouped in triangles which are further grouped into hexagons. In this paper, UAVs, including battery charging or battery swapping stations and light weight Wi-Fi boards, are used for the data transfer among drones and stations using delivery protocols. UAV network analysis and evaluation (lengths of the arcs in seconds) based on experimental preliminary flight tests are proposed. Multiple simulations are performed based on six DTN algorithms, single-copy, and multiple-copies algorithms, and the efficiency of data transmission (delivery rate and latency) is analyzed. A very good delivery rate of 0.973 is obtained using the newly introduced TD-UAV Dijkstra algorithm.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5472
Author(s):  
Adrian Marius Deaconu ◽  
Razvan Udroiu ◽  
Corina-Ştefania Nanau

Drones are frequently used for the delivery of materials or other goods, and to facilitate the capture and transmission of data. Moreover, drone networks have gained significant interest in a number of scenarios, such as in quarantined or isolated areas, following technical damage due to a disaster, or in non-urbanized areas without communication infrastructure. In this context, we propose a network of drones that are able to fly on a map covered by regular polygons, with a well-established mobility schedule, to carry and transfer data. Two means exist to equidistantly cover an area with points, namely, grouping the points into equilateral triangles or squares. In this study, a network of drones that fly in an aerial area divided into squares was proposed and investigated. This network was compared with the case in which the area is divided into equilateral triangles. The cost of the square drone network was lower than that of the triangular network with the same cell length, but the efficiency factors were better for the latter. Two situations related to increasing the drone autonomy using drone charging or battery changing stations were analyzed. This study proposed a Delay Tolerant Network (DTN) to optimize the transmission of data. Multiple simulation studies based on experimental flight tests were performed using the proposed algorithm versus five traditional DTN methods. A light Wi-Fi Arduino development board was used for the data transfer between drones and stations using delivery protocols. The efficiency of data transmission using single-copy and multiple-copy algorithms was analyzed. Simulation results showed a better performance of the proposed Time-Dependent Drone (TD-Drone) Dijkstra algorithm compared with the Epidemic, Spray and Wait, PRoPHET, MaxProp, and MaxDelivery routing protocols.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Mittal ◽  
D Brenner ◽  
S Oliveros ◽  
A Bhatt ◽  
M Preminger ◽  
...  

Abstract Background A “pill-in-the-pocket” anticoagulation strategy, guided by ECG data from an implantable loop recorder (ILR), has been advocated as a clinical strategy. However, a fundamental requirement is the ability to reliably obtain daily ECG data from patients. Objective To determine the reliability of daily ECG data transfer from ILRs. Methods We evaluated patients implanted with an ILR in whom we sought to withhold oral anticoagulation (OAC) unless atrial fibrillation (AF) was detected. The ILR transmits data nightly to a bedside monitor. Once received, the data are sent to a central server. Over the course of a month, we tracked for each patient whether ECG data were received by the server. Results The study included 170 AF patients with an ILR where we planned to withhold OAC unless AF was documented. Daily ECG data were automatically transmitted and retrievable in only 36 (21%) patients. Two (1%) pts had not a single day of connectivity, 6 (4%) pts were connected <7 days, and 16 (9%) pts were connected <14 days. Wireless connectivity was lost for >48 hours in 89 (52%) patients (Figure). Most patients experienced multiple reasons for data transmission failure within the month. Conclusions To determine whether an ILR guided OAC strategy is feasible, reliable daily transmission of ECG data is a fundamental prerequisite. Current technology facilitated daily ECG data transfer in only 1/5 of patients. In the remaining, there was either extended loss of connectivity or no connectivity at all. A “pill-in-the-pocket” anticoagulation approach is currently difficult given existing hardware limitations. Funding Acknowledgement Type of funding source: None


2012 ◽  
Vol 229-231 ◽  
pp. 1543-1546
Author(s):  
Xiao Bo Zhou ◽  
Min Xia ◽  
Hai Long Cheng

To improve data transmission performance of the data acquisition card, a design of high-speed data transmission system is proposed in the thesis. Using FPGA of programmable logic devices, adopting Verilog HDL of hardware description language, the design of modularization and DMA transmission method is implemented in FPGA. Eventually the design implements the data transmission with high-speed through PCI Express interface. Through simulation and verification based on hardware system, this design is proved to be feasible and can satisfy the performance requirements of data transmission in the high-speed data acquisition card applied in high-speed railway communication. The design also has some value of application and reference for a universal data acquisition card.


1983 ◽  
Vol 3 (10) ◽  
pp. 1783-1791
Author(s):  
P Ponte ◽  
P Gunning ◽  
H Blau ◽  
L Kedes

We have constructed isotype-specific subclones from the 3' untranslated regions of alpha-skeletal, alpha-cardiac, beta-cytoskeletal, and gamma-cytoskeletal actin cDNAs. These clones have been used as hybridization probes to assay the number and organization of these actin isotypes in the human genome. Hybridization of these probes to human genomic actin clones (Engel et al., Proc. Natl. Acad. Sci. U.S.A. 78:4674-4678, 1981; Engel et al., Mol. Cell. Biol. 2:674-684, 1982) has allowed the unambiguous assignment of the genomic clones to isotypically defined actin subfamilies. In addition, only one isotype-specific probe hybridizes to each actin-containing gene, with a single exception. This result suggests that the multiple actin genes in the human genome are not closely linked. Genomic DNA blots probed with these subclones under stringent conditions demonstrate that the alpha-skeletal and alpha-cardiac muscle actin genes are single copy, whereas the cytoskeletal actins, beta and gamma, are present in multiple copies in the human genome. Most of the actin genes of other mammals are cytoplasmic as well. These observations have important implications for the evolution of multigene families.


2018 ◽  
Vol 173 ◽  
pp. 03035
Author(s):  
Wei Jiang ◽  
Cuicui Ji ◽  
Yuntian Dai

The data transfer rate is the traditional criterion for evaluating the overall performance of a hard disk. In this paper, the data transmission performance of hard disk was characterized based on fractal theory. The traditional mechanical hard disks and solid state disks with different capacities and specifications were tested and the corresponding signal graph of data transfer was analysed for the calculation of fractal dimension D. The results indicate that the process of hard disk data transfer has fractal characteristics; the fractal dimension D increases with the increase of the average transfer rate and the rotating speed of mechanical hard disk. However, there seems no direct correspondence between the fractal dimension D and the capacity of the hard disk; the larger the floating range of data transmission, the greater value of fractal dimension D.


Author(s):  
Younsaeng Lee ◽  
Seungjoo Kim ◽  
Jinyoung Suk ◽  
Hueonjoon Koo ◽  
Jongseong Kim

Author(s):  
Musa. M. Yahaya ◽  
Aminat Ajibola

Recently, the rate of data transfer over the internet globally has increased and this called for more data security as security of data is of great concern for individuals as well as business owners. Cryptography and steganography are two major key players for data security technique. Cryptography is use to perform encryption on the secrete message while steganography hides the secrete message in digital media, image in this regards. This paper employed these two techniques using Advanced Encryption Standard (AES) for the cryptography and Least Significant Bit (LSB) for the steganography. Combining the two algorithms ensured data integrity, data security, and flexibility. The changes in the secrete message carrier (Stego) is insignificant and is often not noticeable by the nicked eyes, thus this make the interception of the message often difficult by intruder.


2020 ◽  
Vol 6 (1) ◽  
pp. 100-108
Author(s):  
I. Kaisina

This paper investigates the process of multi-stream data transmission from several unmanned aerial vehicles (UAV) to a ground station. We can observe a mathematical model of the data transfer process at the application level of the OSI model (from flying nodes to a ground station). The Poisson – Pareto packet process is used to describe the multi-stream data traffic. The results of simulation are obtained using the network simulator NS-3. It is considered a system for emulating the process of multi-stream data transmission from UAV to a ground station. Acording to the results of studies for multi-stream data transmission it is clear that the increase of the UAV source nodes which simultaneously transmit data to a ground station needs higher requirements for Goodput.


2018 ◽  
Vol 152 ◽  
pp. 02023 ◽  
Author(s):  
Yasir Ashraf Abd Rahman ◽  
Mohammad Taghi Hajibeigy ◽  
Abdulkareem Shafiq Mahdi Al-Obaidi ◽  
Kean How Cheah

Modern UAVs available in the market have well-developed to cater to the countless field of application. UAVs have their own limitations in terms of flight range and manoeuvrability. The traditional fixed-wing UAVs can fly for long distance but require runways or wide-open spaces for take-off and landing. On the other hand, the more trending multirotor UAVs are extremely manoeuvrable but cannot be used for long-distance flights because of their slower speeds and relatively higher consumption of energy. This study proposed the implementation of hybrid VTOL UAV which has the manoeuvring advantage of a multirotor UAV while having the ability to travel fast to reach a further distance. The design methodology and fabrication method are discussed extensively which would be followed by a number of flight tests to prove the concept. The proposed UAV would be equipped with quadcopter motors and a horizontal thrust motor for vertical and horizontal flight modes respectively.


Sign in / Sign up

Export Citation Format

Share Document