scholarly journals Congested Crowd Counting via Adaptive Multi-Scale Context Learning

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3777
Author(s):  
Yani Zhang ◽  
Huailin Zhao ◽  
Zuodong Duan ◽  
Liangjun Huang ◽  
Jiahao Deng ◽  
...  

In this paper, we propose a novel congested crowd counting network for crowd density estimation, i.e., the Adaptive Multi-scale Context Aggregation Network (MSCANet). MSCANet efficiently leverages the spatial context information to accomplish crowd density estimation in a complicated crowd scene. To achieve this, a multi-scale context learning block, called the Multi-scale Context Aggregation module (MSCA), is proposed to first extract different scale information and then adaptively aggregate it to capture the full scale of the crowd. Employing multiple MSCAs in a cascaded manner, the MSCANet can deeply utilize the spatial context information and modulate preliminary features into more distinguishing and scale-sensitive features, which are finally applied to a 1 × 1 convolution operation to obtain the crowd density results. Extensive experiments on three challenging crowd counting benchmarks showed that our model yielded compelling performance against the other state-of-the-art methods. To thoroughly prove the generality of MSCANet, we extend our method to two relevant tasks: crowd localization and remote sensing object counting. The extension experiment results also confirmed the effectiveness of MSCANet.

2020 ◽  
Vol 34 (07) ◽  
pp. 11693-11700 ◽  
Author(s):  
Ao Luo ◽  
Fan Yang ◽  
Xin Li ◽  
Dong Nie ◽  
Zhicheng Jiao ◽  
...  

Crowd counting is an important yet challenging task due to the large scale and density variation. Recent investigations have shown that distilling rich relations among multi-scale features and exploiting useful information from the auxiliary task, i.e., localization, are vital for this task. Nevertheless, how to comprehensively leverage these relations within a unified network architecture is still a challenging problem. In this paper, we present a novel network structure called Hybrid Graph Neural Network (HyGnn) which targets to relieve the problem by interweaving the multi-scale features for crowd density as well as its auxiliary task (localization) together and performing joint reasoning over a graph. Specifically, HyGnn integrates a hybrid graph to jointly represent the task-specific feature maps of different scales as nodes, and two types of relations as edges: (i) multi-scale relations capturing the feature dependencies across scales and (ii) mutual beneficial relations building bridges for the cooperation between counting and localization. Thus, through message passing, HyGnn can capture and distill richer relations between nodes to obtain more powerful representations, providing robust and accurate results. Our HyGnn performs significantly well on four challenging datasets: ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF_QNRF, outperforming the state-of-the-art algorithms by a large margin.


Author(s):  
Muhammad Bilal ◽  
Adwan Alanazi

Crowd density estimation is an important task for crowd monitoring. Many efforts have been done to automate the process of estimating crowd density from images and videos. Despite series of efforts, it remains a challenging task. In this paper, we proposes a new texture feature-based approach for the estimation of crowd density based on Completed Local Binary Pattern (CLBP). We first divide the image into blocks and then re-divide the blocks into cells. For each cell, we compute CLBP and then concatenate them to describe the texture of the corresponding block. We then train a multi-class Support Vector Machine (SVM) classifier, which classifies each block of image into one of four categories, i.e. Very Low, Low, Medium, and High. We evaluate our technique on the PETS 2009 dataset, and from the experiments, we show to achieve 95% accuracy for the proposed descriptor.  We also compare other state-of-the-art texture descriptors and from the experimental results, we show that our proposed method outperforms other state-of-the-art methods.


2020 ◽  
Vol 1651 ◽  
pp. 012060
Author(s):  
Fujian Feng ◽  
Shuang Liu ◽  
Yongzheng Pan ◽  
Xin He ◽  
Jiayin Wei ◽  
...  

Author(s):  
Xinghao Ding ◽  
Fujin He ◽  
Zhirui Lin ◽  
Yu Wang ◽  
Huimin Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document