scholarly journals Robust Korean License Plate Recognition Based on Deep Neural Networks

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4140
Author(s):  
Hanxiang Wang ◽  
Yanfen Li ◽  
L.-Minh Dang ◽  
Hyeonjoon Moon

With the rapid rise of private vehicles around the world, License Plate Recognition (LPR) plays a vital role in supporting the government to manage vehicles effectively. However, an introduction of new types of license plate (LP) or slight changes in the LP format can break previous LPR systems, as they fail to recognize the LP. Moreover, the LPR system is extremely sensitive to the conditions of the surrounding environment. Thus, this paper introduces a novel deep learning-based Korean LPR system that can effectively deal with existing challenges. The main contributions of this study include (1) a robust LPR system with the integration of three pre-processing techniques (defogging, low-light enhancement, and super-resolution) that can effectively recognize the LP under various conditions, (2) the establishment of two original Korean LPR approaches for different scenarios, including whole license plate recognition (W-LPR) and single-character license plate recognition (SC-LPR), and (3) the introduction of two Korean LPR datasets (synthetic data and real data) involving a new type of LP introduced by the Korean government. Through several experiments, the proposed LPR framework achieved the highest recognition accuracy of 98.94%.

2020 ◽  
Vol 8 (6) ◽  
pp. 5730-5737

Digital Image Processing is application of computer algorithms to process, manipulate and interpret images. As a field it is playing an increasingly important role in many aspects of people’s daily life. Even though Image Processing has accomplished a great deal on its own, nowadays researches are being conducted in using it with Deep Learning (which is part of a broader family, Machine Learning) to achieve better performance in detecting and classifying objects in an image. Car’s License Plate Recognition is one of the hottest research topics in the domain of Image Processing (Computer Vision). It is having wide range of applications since license number is the primary and mandatory identifier of motor vehicles. When it comes to license plates in Ethiopia, they have unique features like Amharic characters, differing dimensions and plate formats. Although there is a research conducted on ELPR, it was attempted using the conventional image processing techniques but never with deep learning. In this proposed research an attempt is going to be made in tackling the problem of ELPR with deep learning and image processing. Tensorflow is going to be used in building the deep learning model and all the image processing is going to be done with OpenCV-Python. So, at the end of this research a deep learning model that recognizes Ethiopian license plates with better accuracy is going to be built.


2019 ◽  
Vol 11 (11) ◽  
pp. 1288 ◽  
Author(s):  
Hossein Aghababaee ◽  
Giampaolo Ferraioli ◽  
Laurent Ferro-Famil ◽  
Gilda Schirinzi ◽  
Yue Huang

In the frame of polarimetric synthetic aperture radar (SAR) tomography, full-ranks reconstruction framework has been recognized as a significant technique for fully characterization of superimposed scatterers in a resolution cell. The technique, mainly is characterized by the advantages of polarimetric scattering pattern reconstruction, allows physical feature extraction of the scatterers. In this paper, to overcome the limitations of conventional full-rank tomographic techniques in natural environments, a polarimetric estimator with advantages of super-resolution imaging is proposed. Under the frame of compressive sensing (CS) and sparsity based reconstruction, the profile of second order polarimetric coherence matrix T is recovered. Once the polarimetric coherence matrices of the scatterers are available, the physical features can be extracted using classical polarimetric processing techniques. The objective of this study is to evaluate the performance of the proposed full-rank polarimetric reconstruction by means of conventional three-component decomposition of T, and focusing on the consistency of vertical resolution and polarimetric scattering pattern of the scatterers. The outcomes from simulated and two different real data sets confirm that significant improvement can be achieved in the reconstruction quality with respect to conventional approaches.


Author(s):  
Jae-Hyeon Lee ◽  
Sung-Man Cho ◽  
Seung-Ju Lee ◽  
Cheong-Hwa Kim ◽  
Goo-Man Park

2012 ◽  
Vol 241-244 ◽  
pp. 3165-3170 ◽  
Author(s):  
Kyung Mi Lee ◽  
Keon Myung Lee

This paper introduces a new type of problem called the frequent common family subtree mining problem for a collection of leaf-labeled trees and presents some characteristics for the problem. It proposes an algorithm to find frequent common families in trees. To its applicability, the proposed method has been applied to both several synthetic data sets and a real data set.


Sign in / Sign up

Export Citation Format

Share Document