scholarly journals Formation Tracking Control and Obstacle Avoidance of Unicycle-Type Robots Guaranteeing Continuous Velocities

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4374
Author(s):  
Jose Bernardo Martinez ◽  
Hector M. Becerra ◽  
David Gomez-Gutierrez

In this paper, we addressed the problem of controlling the position of a group of unicycle-type robots to follow in formation a time-varying reference avoiding obstacles when needed. We propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve the both tasks involved in the problem, effectively combining control laws devoted to achieve formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first, the advantages of the proposed approach are not all integrated in existing schemes, ours is fully distributed since the formulation is based on consensus including the leader as part of the formation, scalable for a large number of robots, generic to define a desired formation, and it does not require a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is the first time that a distributed formation tracking control is combined with obstacle avoidance to solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven even in the transition of tasks. The effectiveness of the approach is shown through simulations and experiments with real robots.

2021 ◽  
Author(s):  
Yingjie Deng ◽  
Tao Ni ◽  
Jiantao Wang

Abstract This paper investigates the event-triggered tracking control of the nonstrict-feedback nonlinear system with the time-varying disturbances. While the fuzzy logic systems (FLSs) serve as the approximators to the unknown dynamics, the compound disturbance is comprised of the time-varying disturbance and the approximation error of the FLS. An event-triggered compound learning algorithm is originally developed to accurately estimate the total uncertainties. By referring to an event-triggered adaptive model, the control laws are derived without provoking the problem of "algebraic loop", seeing Remark 3. The command filters are employed to generate the continuous substitutes for both the virtual control laws and their derivatives, so as to solve the recently proposed problem of "jumps of virtual control laws" arising in the backstepping-based event-triggered control (ETC) that functions in the channel of sensor to controller. The triggering condition is constructed to guarantee the similarity between the adaptive model and the original system. While the satisfactory learning performance of the FLSs and the compound disturbances estimation are maintained, the proposed control scheme can guarantee the semi-globally uniformly ultimate boundedness (SGUUB) of all the tracking errors. Finally, a numerical experiment is carried out to exemplify the effectiveness of the proposed control scheme.


2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Sign in / Sign up

Export Citation Format

Share Document