scholarly journals A Hierarchy-Based System for Recognizing Customer Activity in Retail Environments

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4712
Author(s):  
Jiahao Wen ◽  
Luis Guillen ◽  
Toru Abe ◽  
Takuo Suganuma

Customer activity (CA) in retail environments, which ranges over various shopper situations in store spaces, provides valuable information for store management and marketing planning. Several systems have been proposed for customer activity recognition (CAR) from in-store camera videos, and most of them use machine learning based end-to-end (E2E) CAR models, due to their remarkable performance. Usually, such E2E models are trained for target conditions (i.e., particular CA types in specific store spaces). Accordingly, the existing systems are not malleable to fit the changes in target conditions because they require entire retraining of their specialized E2E models and concurrent use of additional E2E models for new target conditions. This paper proposes a novel CAR system based on a hierarchy that organizes CA types into different levels of abstraction from lowest to highest. The proposed system consists of multiple CAR models, each of which performs CAR tasks that belong to a certain level of the hierarchy on the lower level’s output, and thus conducts CAR for videos through the models level by level. Since these models are separated, this system can deal efficiently with the changes in target conditions by modifying some models individually. Experimental results show the effectiveness of the proposed system in adapting to different target conditions.

Author(s):  
Shuming Ma ◽  
Xu Sun ◽  
Junyang Lin ◽  
Xuancheng Ren

Text summarization and sentiment classification both aim to capture the main ideas of the text but at different levels. Text summarization is to describe the text within a few sentences, while sentiment classification can be regarded as a special type of summarization which ``summarizes'' the text into a even more abstract fashion, i.e., a sentiment class. Based on this idea, we propose a hierarchical end-to-end model for joint learning of text summarization and sentiment classification, where the sentiment classification label is treated as the further ``summarization'' of the text summarization output. Hence, the sentiment classification layer is put upon the text summarization layer, and a hierarchical structure is derived. Experimental results on Amazon online reviews datasets show that our model achieves better performance than the strong baseline systems on both abstractive summarization and sentiment classification.


Author(s):  
Hassan Khaled ◽  
Osama Abu-Elnasr ◽  
Samir Elmougy ◽  
A. S. Tolba

AbstractIn recent years, the adoption of machine learning has grown steadily in different fields affecting the day-to-day decisions of individuals. This paper presents an intelligent system for recognizing human’s daily activities in a complex IoT environment. An enhanced model of capsule neural network called 1D-HARCapsNe is proposed. This proposed model consists of convolution layer, primary capsule layer, activity capsules flat layer and output layer. It is validated using WISDM dataset collected via smart devices and normalized using the random-SMOTE algorithm to handle the imbalanced behavior of the dataset. The experimental results indicate the potential and strengths of the proposed 1D-HARCapsNet that achieved enhanced performance with an accuracy of 98.67%, precision of 98.66%, recall of 98.67%, and F1-measure of 0.987 which shows major performance enhancement compared to the Conventional CapsNet (accuracy 90.11%, precision 91.88%, recall 89.94%, and F1-measure 0.93).


2016 ◽  
Author(s):  
Giulio Caravagna ◽  
Luca Bortolussi ◽  
Guido Sanguinetti

AbstractBiological systems are often modelled at different levels of abstraction depending on the particular aims/resources of a study. Such different models often provide qualitatively concordant predictions over specific parametrisations, but it is generally unclear whether model predictions are quantitatively in agreement, and whether such agreement holds for different parametrisations. Here we present a generally applicable statistical machine learning methodology to automatically reconcile the predictions of different models across abstraction levels. Our approach is based on defining a correction map, a random function which modifies the output of a model in order to match the statistics of the output of a different model of the same system. We use two biological examples to give a proof-of-principle demonstration of the methodology, and discuss its advantages and potential further applications.


Author(s):  
Yun Peng ◽  
Byron Choi ◽  
Jianliang Xu

AbstractGraphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods. For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.


2021 ◽  
Vol 40 (5) ◽  
pp. 9361-9382 ◽  
Author(s):  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

Quality prediction plays an essential role in the business outcome of the product. Due to the business interest of the concept, it has extensively been studied in the last few years. Advancement in machine learning (ML) techniques and with the advent of robust and sophisticated ML algorithms, it is required to analyze the factors influencing the success of the movies. This paper presents a hybrid features prediction model based on pre-released and social media data features using multiple ML techniques to predict the quality of the pre-released movies for effective business resource planning. This study aims to integrate pre-released and social media data features to form a hybrid features-based movie quality prediction (MQP) model. The proposed model comprises of two different experimental models; (i) predict movies quality using the original set of features and (ii) develop a subset of features based on principle component analysis technique to predict movies success class. This work employ and implement different ML-based classification models, such as Decision Tree (DT), Support Vector Machines with the linear and quadratic kernel (L-SVM and Q-SVM), Logistic Regression (LR), Bagged Tree (BT) and Boosted Tree (BOT), to predict the quality of the movies. Different performance measures are utilized to evaluate the performance of the proposed ML-based classification models, such as Accuracy (AC), Precision (PR), Recall (RE), and F-Measure (FM). The experimental results reveal that BT and BOT classifiers performed accurately and produced high accuracy compared to other classifiers, such as DT, LR, LSVM, and Q-SVM. The BT and BOT classifiers achieved an accuracy of 90.1% and 89.7%, which shows an efficiency of the proposed MQP model compared to other state-of-art- techniques. The proposed work is also compared with existing prediction models, and experimental results indicate that the proposed MQP model performed slightly better compared to other models. The experimental results will help the movies industry to formulate business resources effectively, such as investment, number of screens, and release date planning, etc.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Boeckaerts ◽  
Michiel Stock ◽  
Bjorn Criel ◽  
Hans Gerstmans ◽  
Bernard De Baets ◽  
...  

AbstractNowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


Sign in / Sign up

Export Citation Format

Share Document