scholarly journals Energy-Efficient Wireless Communication Strategy for Precision Agriculture Irrigation Control

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5541
Author(s):  
Camilo Lozoya ◽  
Antonio Favela-Contreras ◽  
Alberto Aguilar-Gonzalez ◽  
L.C. Félix-Herrán ◽  
Luis Orona

In smart farming, precision agriculture irrigation is essential to reduce water consumption and produce higher crop yields. Closed-loop irrigation based on soil moisture measurements has demonstrated the capability to achieve a considerable amount of water savings while growing healthy crops. Automated irrigation systems are typically implemented over wireless sensor networks, where the sensing devices are battery-powered, and thus they have to manage energy constraints by implementing efficient communication schemas. Self-triggered control is an aperiodic sampling strategy capable of reducing the number of networked messages compared to traditional periodical sampling. In this paper, we propose an energy-efficient communication strategy for closed-loop control irrigation, implemented over a wireless sensor network, where event-driven soil moisture measurements are conducted by the sensing devices only when needed. Thereby, the self-triggered algorithm estimates the occurrence of the next sampling period based on the process dynamics. The proposed strategy was evaluated in a pecan crop field and compared with periodical sampling implementations. The experimental results show that the proposed adaptive sampling rate technique decreased the number of communication messages more than 85% and reduced power consumption up to 20%, while still accomplishing the system control objectives in terms of the irrigation efficiency and water consumption.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3450 ◽  
Author(s):  
Haider Jawad ◽  
Rosdiadee Nordin ◽  
Sadik Gharghan ◽  
Aqeel Jawad ◽  
Mahamod Ismail ◽  
...  

The use of wireless sensor networks (WSNs) in modern precision agriculture to monitor climate conditions and to provide agriculturalists with a considerable amount of useful information is currently being widely considered. However, WSNs exhibit several limitations when deployed in real-world applications. One of the challenges faced by WSNs is prolonging the life of sensor nodes. This challenge is the primary motivation for this work, in which we aim to further minimize the energy consumption of a wireless agriculture system (WAS), which includes air temperature, air humidity, and soil moisture. Two power reduction schemes are proposed to decrease the power consumption of the sensor and router nodes. First, a sleep/wake scheme based on duty cycling is presented. Second, the sleep/wake scheme is merged with redundant data about soil moisture, thereby resulting in a new algorithm called sleep/wake on redundant data (SWORD). SWORD can minimize the power consumption and data communication of the sensor node. A 12 V/5 W solar cell is embedded into the WAS to sustain its operation. Results show that the power consumption of the sensor and router nodes is minimized and power savings are improved by the sleep/wake scheme. The power consumption of the sensor and router nodes is improved by 99.48% relative to that in traditional operation when the SWORD algorithm is applied. In addition, data communication in the SWORD algorithm is minimized by 86.45% relative to that in the sleep/wake scheme. The comparison results indicate that the proposed algorithms outperform power reduction techniques proposed in other studies. The average current consumptions of the sensor nodes in the sleep/wake scheme and the SWORD algorithm are 0.731 mA and 0.1 mA, respectively.


Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


Sign in / Sign up

Export Citation Format

Share Document