scholarly journals An Investigation into the Appropriateness of Car-Following Models in Assessing Autonomous Vehicles

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7131
Author(s):  
Akito Higatani ◽  
Wafaa Saleh

The dramatic progress of Intelligent Transportation Systems (ITS) has made autodriving technology extensively emphasised. Various models have been developed for the aim of modelling the behaviour of autonomous vehicles and their impacts on traffic, although there is still a lot to be researched about the technology. There are three main features that need to be represented in any car-following model to enable it to model autonomous vehicles: desired time gap, collision avoidance system and sensor detection range. Most available car-following models satisfy the first feature, most of the available car-following models do not satisfy the second feature and only few models satisfy the third feature. Therefore, conclusions from such models must be taken cautiously. Any of these models could be considered for updating to include a collision avoidance-system module, in order to be able to model autonomous vehicles. The Helly model is car-following model that has a simple structure and is sometimes used as the controller for Autonomous Vehicles (AV), but it does not have a collision avoidance concept. In this paper, the Helly model, which is a very commonly used classic car-following model is assessed and examined for possible update for the purpose of using it to model autonomous vehicles more efficiently. This involves assessing the parameters of the model and investigating the possible update of the model to include a collision avoidance-system module. There are two procedures that have been investigated in this paper to assess the Helly model to allow for a more realistic modelling of autonomous vehicles. The first technique is to investigate and assess the values of the parameters of the model. The second procedure is to modify the formula of that model to include a collision avoidance system. The results show that the performance of the modified full-range Auto Cruising Control (FACC) Helly model is superior to the other models in almost all situations and for almost all time-gap settings. Only the Alexandros E. Papacharalampous’s Model (A.E.P.) controller seems to perform slightly better than the (FACC) Helly model. Therefore, it is reasonable to suggest that the (FACC) Helly model be recommended as the most accurate model to use to represent autonomous vehicles in microsimulations, and that it should be further investigated.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Shihao Li ◽  
Ting Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

In this paper, an extended car-following model with consideration of the driver’s desire for smooth driving and the self-stabilizing control in historical velocity data is constructed. Moreover, for better reflecting the reality, we also integrate the velocity uncertainty into the new model to analyze the internal characteristics of traffic flow in situation where the historical velocity data are uncertain. Then, the model’s linear stability condition is inferred by utilizing linear stability analysis, and the modified Korteweg-de Vries (mKdV) equation is also obtained to depict the evolution properties of traffic congestion. According to the theoretical analysis, we observe that the degree of traffic congestion is alleviated when the control signal is considered, and the historical time gap and the velocity uncertainty also play a role in affecting the stability of traffic flow. Finally, some numerical simulation experiments are implemented and the experiments’ results demonstrate that the control signals including the self-stabilizing control, the driver’s desire for smooth driving, the historical time gap, and the velocity uncertainty are of avail to improve the traffic jam, which are consistent with the theoretical analytical results.


Author(s):  
Huaqing Ma ◽  
Hao Wu ◽  
Yucong Hu ◽  
Zhiwei Chen ◽  
Jialing Luo

The emergence of connected and autonomous vehicles (CAV) is of great significance to the development of transportation systems. This paper proposes a multiple-factors aware car-following (MACF) model for CAVs with the consideration of multiple factors including vehicle co-optimization velocity, velocity difference of multiple PVs, and space headway of multiple PVs. The Next Generation Simulation (NGSIM) dataset and the genetic algorithm are used to calibrate the parameters of the model. The stability of the MACF model is first theoretically proved and then empirically verified via numerical simulation experiments. In addition, the VISSIM software is partially redeveloped based on the MACF model to analyze mixed traffic flows consisting of human-driven vehicles and CAVs. Results show that the integration of CAVs based on the MACF model effectively improves the average velocity and throughput of the system.


2010 ◽  
Vol 44 (8-9) ◽  
pp. 1115-1131 ◽  
Author(s):  
Antoine Tordeux ◽  
Sylvain Lassarre ◽  
Michel Roussignol

Sign in / Sign up

Export Citation Format

Share Document