scholarly journals Towards a Mobile Gait Analysis for Patients with a Spinal Cord Injury: A Robust Algorithm Validated for Slow Walking Speeds

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7381
Author(s):  
Charlotte Werner ◽  
Chris Awai Awai Easthope ◽  
Armin Curt ◽  
László Demkó

Spinal cord injury (SCI) patients suffer from diverse gait deficits depending on the severity of their injury. Gait assessments can objectively track the progress during rehabilitation and support clinical decision making, but a comprehensive gait analysis requires far more complex setups and time-consuming protocols that are not feasible in the daily clinical routine. As using inertial sensors for mobile gait analysis has started to gain ground, this work aimed to develop a sensor-based gait analysis for the specific population of SCI patients that measures the spatio-temporal parameters of typical gait laboratories for day-to-day clinical applications. The proposed algorithm uses shank-mounted inertial sensors and personalized thresholds to detect steps and gait events according to the individual gait profiles. The method was validated in nine SCI patients and 17 healthy controls walking on an instrumented treadmill while wearing reflective markers for motion capture used as a gold standard. The sensor-based algorithm (i) performed similarly well for the two cohorts and (ii) is robust enough to cover the diverse gait deficits of SCI patients, from slow (0.3 m/s) to preferred walking speeds.

2017 ◽  
Vol 34 (20) ◽  
pp. 2841-2842 ◽  
Author(s):  
Michael G. Fehlings ◽  
Vanessa K. Noonan ◽  
Derek Atkins ◽  
Anthony S. Burns ◽  
Christiana L. Cheng ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3940
Author(s):  
Vânia Guimarães ◽  
Inês Sousa ◽  
Miguel Velhote Correia

Inertial sensors can potentially assist clinical decision making in gait-related disorders. Methods for objective spatio-temporal gait analysis usually assume the careful alignment of the sensors on the body, so that sensor data can be evaluated using the body coordinate system. Some studies infer sensor orientation by exploring the cyclic characteristics of walking. In addition to being unrealistic to assume that the sensor can be aligned perfectly with the body, the robustness of gait analysis with respect to differences in sensor orientation has not yet been investigated—potentially hindering use in clinical settings. To address this gap in the literature, we introduce an orientation-invariant gait analysis approach and propose a method to quantitatively assess robustness to changes in sensor orientation. We validate our results in a group of young adults, using an optical motion capture system as reference. Overall, good agreement between systems is achieved considering an extensive set of gait metrics. Gait speed is evaluated with a relative error of −3.1±9.2 cm/s, but precision improves when turning strides are excluded from the analysis, resulting in a relative error of −3.4±6.9 cm/s. We demonstrate the invariance of our approach by simulating rotations of the sensor on the foot.


Spinal Cord ◽  
2020 ◽  
Vol 58 (8) ◽  
pp. 873-881 ◽  
Author(s):  
Claudia Druschel ◽  
Ramin R. Ossami Saidy ◽  
Ulrike Grittner ◽  
Claus P. Nowak ◽  
Andreas Meisel ◽  
...  

2020 ◽  
Vol 34 (7) ◽  
pp. 627-639 ◽  
Author(s):  
Jennifer K. Lotter ◽  
Christopher E. Henderson ◽  
Abbey Plawecki ◽  
Molly E. Holthus ◽  
Emily H. Lucas ◽  
...  

Background. Many research studies attempting to improve locomotor function following motor incomplete spinal cord injury (iSCI) focus on providing stepping practice. However, observational studies of physical therapy strategies suggest the amount of stepping practice during clinical rehabilitation is limited; rather, many interventions focus on mitigating impairments underlying walking dysfunction. Objective. The purpose of this blinded-assessor randomized trial was to evaluate the effects of task-specific versus impairment-based interventions on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI >1-year duration performed either task-specific (upright stepping) or impairment-based training for up to 20 sessions over ≤6 weeks, with interventions alternated after >4 weeks delay. Both strategies focused on achieving higher cardiovascular intensities, with training specificity manipulated by practicing only stepping practice in variable contexts or practicing tasks targeting impairments underlying locomotor dysfunction (strengthening, balance tasks, and recumbent stepping). Results. Significantly greater increases in fastest overground and treadmill walking speeds were observed following task-specific versus impairment-based training, with moderate associations between differences in amount of practice and outcomes. Gains in balance confidence were also observed following task-specific vs impairment-based training, although incidence of falls was also increased with the former protocol. Limited gains were observed with impairment-based training except for peak power during recumbent stepping tests. Conclusion. The present study reinforces work from other patient populations that the specificity of task practice is a critical determinant of locomotor outcomes and suggest impairment-based exercises may not translate to improvements in functional tasks. Clinical Trial Registration URL. https://clinicaltrials.gov/ ; Unique Identifier: NCT02115685.


2002 ◽  
Vol 82 (7) ◽  
pp. 707-715 ◽  
Author(s):  
Edelle Carmen Field-Fote ◽  
Dejan Tepavac

Abstract Background and Purpose. Limb coordination is an element of motor control that is frequently disrupted following spinal cord injury (SCI). The authors assessed intralimb coordination in subjects with SCI following a 12-week program combining body weight support, electrical stimulation, and treadmill training. Subjects. Fourteen subjects with long-standing (mean time post-SCI=70 months, range=12–171 months), incomplete SCI participated. Three subjects without SCI provided data for comparison. Methods. A vector-based technique was used to assign values to the frame-by-frame changes in hip/knee angle, and vector analysis techniques were used to assess how closely the hip/knee angles of each step cycle resembled those of every other step cycle. Overground and treadmill walking speeds also were measured. Results. Following training, 9 of the 14 subjects with SCI demonstrated greater intercycle agreement. Mean overground and treadmill walking speeds improved (84% and 158%, respectively). Discussion and Conclusion. The intervention used in this study is based on our current understanding of the role of afferent input in the production of walking. Although the study sample was small and there was no control group, results suggest that training may improve intralimb coordination in people with SCI.


2014 ◽  
Vol 31 (9) ◽  
pp. 846-856 ◽  
Author(s):  
Dora Krizsan-Agbas ◽  
Michelle K. Winter ◽  
Linda S. Eggimann ◽  
Judith Meriwether ◽  
Nancy E. Berman ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 329 ◽  
Author(s):  
Stephana Carelli ◽  
Toniella Giallongo ◽  
Federica Rey ◽  
Mattia Colli ◽  
Delfina Tosi ◽  
...  

Spinal cord injury (SCI) is a devastating disease, which leads to paralysis and is associated to substantially high costs for the individual and society. At present, no effective therapies are available. Here, the use of mechanically-activated lipoaspirate adipose tissue (MALS) in a murine experimental model of SCI is presented. Our results show that, following acute intraspinal MALS transplantation, there is an engraftment at injury site with the acute powerful inhibition of the posttraumatic inflammatory response, followed by a significant progressive improvement in recovery of function. This is accompanied by spinal cord tissue preservation at the lesion site with the promotion of endogenous neurogenesis as indicated by the significant increase of Nestin-positive cells in perilesional areas. Cells originated from MALS infiltrate profoundly the recipient cord, while the extra-dural fat transplant is gradually impoverished in stromal cells. Altogether, these novel results suggest the potential of MALS application in the promotion of recovery in SCI.


Sign in / Sign up

Export Citation Format

Share Document