scholarly journals A Calibration/Disaggregation Coupling Scheme for Retrieving Soil Moisture at High Spatio-Temporal Resolution: Synergy between SMAP Passive Microwave, MODIS/Landsat Optical/Thermal and Sentinel-1 Radar Data

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7406
Author(s):  
Nitu Ojha ◽  
Olivier Merlin ◽  
Abdelhakim Amazirh ◽  
Nadia Ouaadi ◽  
Vincent Rivalland ◽  
...  

Soil moisture (SM) data are required at high spatio-temporal resolution—typically the crop field scale every 3–6 days—for agricultural and hydrological purposes. To provide such high-resolution SM data, many remote sensing methods have been developed from passive microwave, active microwave and thermal data. Despite the pros and cons of each technique in terms of spatio-temporal resolution and their sensitivity to perturbing factors such as vegetation cover, soil roughness and meteorological conditions, there is currently no synergistic approach that takes advantage of all relevant (passive, active microwave and thermal) remote sensing data. In this context, the objective of the paper is to develop a new algorithm that combines SMAP L-band passive microwave, MODIS/Landsat optical/thermal and Sentinel-1 C-band radar data to provide SM data at the field scale at the observation frequency of Sentinel-1. In practice, it is a three-step procedure in which: (1) the 36 km resolution SMAP SM data are disaggregated at 100 m resolution using MODIS/Landsat optical/thermal data on clear sky days, (2) the 100 m resolution disaggregated SM data set is used to calibrate a radar-based SM retrieval model and (3) the so-calibrated radar model is run at field scale on each Sentinel-1 overpass. The calibration approach also uses a vegetation descriptor as ancillary data that is derived either from optical (Sentinel-2) or radar (Sentinel-1) data. Two radar models (an empirical linear regression model and a non-linear semi-empirical formulation derived from the water cloud model) are tested using three vegetation descriptors (NDVI, polarization ratio (PR) and radar coherence (CO)) separately. Both models are applied over three experimental irrigated and rainfed wheat crop sites in central Morocco. The field-scale temporal correlation between predicted and in situ SM is in the range of 0.66–0.81 depending on the retrieval configuration. Based on this data set, the linear radar model using PR as a vegetation descriptor offers a relatively good compromise between precision and robustness all throughout the agricultural season with only three parameters to set. The proposed synergistical approach combining multi-resolution/multi-sensor SM-relevant data offers the advantage of not requiring in situ measurements for calibration.

2021 ◽  
Author(s):  
Nadia Ouaadi ◽  
Jamal Ezzahar ◽  
Saïd Khabba ◽  
Salah Er-Raki ◽  
Adnane Chakir ◽  
...  

Abstract. A better understanding of the hydrological functioning of irrigated crops using remote sensing observations is of prime importance in the semi-arid areas where the water resources are limited. Radar observations, available at high resolution and revisit time since the launch of Sentinel-1 in 2014, have shown great potential for the monitoring of the water content of the upper soil and of the canopy. In this paper, a complete set of data for radar signal analysis is shared to the scientific community for the first time to our knowledge. The data set is composed of Sentinel-1 products and in situ measurements of soil and vegetation variables collected during three agricultural seasons over drip-irrigated winter wheat in the Haouz plain in Morocco. The in situ data gathers soil measurements (time series of half-hourly surface soil moisture, surface roughness and agricultural practices) and vegetation measurements collected every week/two weeks including above-ground fresh and dry biomasses, vegetation water content based on destructive measurements, cover fraction, leaf area index and plant height. Radar data are the backscattering coefficient and the interferometric coherence derived from Sentinel-1 GRDH (Ground Range Detected High resolution) and SLC (Single Look Complex) products, respectively. The normalized difference vegetation index derived from Sentinel-2 data based on Level-2A (surface reflectance and cloud mask) atmospheric effects-corrected products is also provided. This database, which is the first of its kind made available in open access, is described here comprehensively in order to help the scientific community to evaluate and to develop new or existing remote sensing algorithms for monitoring wheat canopy under semi-arid conditions. The data set is particularly relevant for the development of radar applications including surface soil moisture and vegetation parameters retrieval using either physically based or empirical approaches such as machine and deep learning algorithms. The database is archived in the DataSuds repository and is freely-accessible via the DOI: https://doi.org/10.23708/8D6WQC (Ouaadi et al., 2020a).


2021 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Giovanni Paolini ◽  
Maria Jose Escorihuela ◽  
Joaquim Bellvert ◽  
Olivier Merlin

This paper introduces a modified version of the DisPATCh (Disaggregation based on Physical And Theoretical scale Change) algorithm to disaggregate an SMAP surface soil moisture (SSM) product at a 20 m spatial resolution, through the use of sharpened Sentinel-3 land surface temperature (LST) data. Using sharpened LST as a high resolution proxy of SSM is a novel approach that needs to be validated and can be employed in a variety of applications that currently lack in a product with a similar high spatio-temporal resolution. The proposed high resolution SSM product was validated against available in situ data for two different fields, and it was also compared with two coarser DisPATCh products produced, disaggregating SMAP through the use of an LST at 1 km from Sentinel-3 and MODIS. From the correlation between in situ data and disaggregated SSM products, a general improvement was found in terms of Pearson’s correlation coefficient (R) for the proposed high resolution product with respect to the two products at 1 km. For the first field analyzed, R was equal to 0.47 when considering the 20 m product, an improvement compared to the 0.28 and 0.39 for the 1 km products. The improvement was especially noticeable during the summer season, in which it was only possible to successfully capture field-specific irrigation practices at the 20 m resolution. For the second field, R was 0.31 for the 20 m product, also an improvement compared to the 0.21 and 0.23 for the 1 km product. Additionally, the new product was able to depict SSM spatial variability at a sub-field scale and a validation analysis is also proposed at this scale. The main advantage of the proposed product is its very high spatio-temporal resolution, which opens up new opportunities to apply remotely sensed SSM data in disciplines that require fine spatial scales, such as agriculture and water management.


2021 ◽  
Vol 13 (7) ◽  
pp. 3707-3731
Author(s):  
Nadia Ouaadi ◽  
Jamal Ezzahar ◽  
Saïd Khabba ◽  
Salah Er-Raki ◽  
Adnane Chakir ◽  
...  

Abstract. A better understanding of the hydrological functioning of irrigated crops using remote sensing observations is of prime importance in semi-arid areas where water resources are limited. Radar observations, available at high resolution and with a high revisit time since the launch of Sentinel-1 in 2014, have shown great potential for the monitoring of the water content of the upper soil and of the canopy. In this paper, a complete set of data for radar signal analysis is shared with the scientific community for the first time to our knowledge. The data set is composed of Sentinel-1 products and in situ measurements of soil and vegetation variables collected during three agricultural seasons over drip-irrigated winter wheat in the Haouz plain in Morocco. The in situ data gather soil measurements (time series of half-hourly surface soil moisture, surface roughness and agricultural practices) and vegetation measurements collected every week/2 weeks including aboveground fresh and dry biomasses, vegetation water content based on destructive measurements, the cover fraction, the leaf area index, and plant height. Radar data are the backscattering coefficient and the interferometric coherence derived from Sentinel-1 GRDH (Ground Range Detected High Resolution) and SLC (Single Look Complex) products, respectively. The normalized difference vegetation index derived from Sentinel-2 data based on Level-2A (surface reflectance and cloud mask) atmospheric-effects-corrected products is also provided. This database, which is the first of its kind made available open access, is described here comprehensively in order to help the scientific community to evaluate and to develop new or existing remote sensing algorithms for monitoring wheat canopy under semi-arid conditions. The data set is particularly relevant for the development of radar applications including surface soil moisture and vegetation variable retrieval using either physically based or empirical approaches such as machine and deep learning algorithms. The database is archived in the DataSuds repository and is freely accessible via the following DOI: https://doi.org/10.23708/8D6WQC (Ouaadi et al., 2020a).


2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


2013 ◽  
Vol 397-400 ◽  
pp. 2503-2506
Author(s):  
Rui Wang ◽  
Jing Wen Xu ◽  
Dan Wang ◽  
Xing Mei Xie ◽  
Peng Wang

On the basis of previous work, this paper aims to build several proper drought indices based on passive microwave remote sensing AMSR-E data in Huaihe River Basin. Compared with measured soil moisture, optimal drought indices have been selected to explore the spatio-temporal variation of drought conditions. The results indicate that there are satisfactory negative correlations between MPDIs (Microwave Polarization Index) and observed soil moisture. Moreover, MPDIs calculated by bands of 69GHz and 187GHz are much closer to variation trend of soil moisture than those obtained by other bands.


2021 ◽  
Author(s):  
Jingyi Huang ◽  
Ankur Desai ◽  
Jun Zhu ◽  
Alfred Hartemink ◽  
Paul Stoy ◽  
...  

<p>Current in situ soil moisture monitoring networks are sparsely distributed while remote sensing satellite soil moisture maps have a very coarse spatial resolution. In this study, an empirical global surface soil moisture (SSM) model was established via fusion of in situ continental and regional scale soil moisture networks, remote sensing data (SMAP and Sentinel-1) and high-resolution land surface parameters (e.g., soil texture, terrain) using a quantile random forest (QRF) algorithm. The model had a spatial resolution of 100m and performed moderately well under cultivated, herbaceous, forest, and shrub soils (R<sup>2</sup> = 0.524, RMSE = 0.07 m<sup>3</sup> m<sup>−3</sup>). It has a relatively good transferability at the regional scale among different continental and regional networks (mean RMSE = 0.08–0.10 m<sup>3</sup> m<sup>−3</sup>). The global model was then applied to map SSM dynamics at 30–100m across a field-scale network (TERENO-Wüstebach) in Germany and an 80-ha irrigated cropland in Wisconsin, USA. Without local training data, the model was able to delineate the variations in SSM at the field scale but contained large bias. With the addition of 10% local training datasets (“spiking”), the bias of the model was significantly reduced. The QRF model was also affected by the resolution and accuracy of soil maps. It was concluded that the empirical model has the potential to be applied elsewhere across the globe to map SSM at the regional to field scales for research and applications. Future research is required to improve the performance of the model by incorporating more field-scale soil moisture sensor networks and high-resolution soil maps as well as assimilation with process-based water flow models.</p>


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2777
Author(s):  
Tao Cheng ◽  
Siyang Hong ◽  
Bensheng Huang ◽  
Jing Qiu ◽  
Bikui Zhao ◽  
...  

Drought is the costliest disaster around the world and in China as well. Northeastern China is one of China’s most important major grain producing areas. Frequent droughts have harmed the agriculture of this region and further threatened national food security. Therefore, the timely and effective monitoring of drought is extremely important. In this study, the passive microwave remote sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several in situ meteorological indices through Pearson correlation analysis to assess the performance of SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions. Our results showed that the SMOS-SM product had relatively high correlation with in situ indices, especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in northeastern China, and this capacity would be enhanced when field capacity information became available.


2018 ◽  
Vol 114 (7/8) ◽  
Author(s):  
Thigesh Vather ◽  
Colin Everson ◽  
Michael Mengistu ◽  
Trenton Franz

Soil moisture is an important hydrological parameter, which is essential for a variety of applications, thereby extending to numerous disciplines. Currently, there are three methods of estimating soil moisture: ground-based (in-situ) measurements; remote sensing based methods and land surface models. In recent years, the cosmic ray probe (CRP), which is an in-situ technique, has been implemented in several countries across the globe. The CRP provides area-averaged soil moisture at an intermediate scale and thus bridges the gap between in-situ point measurements and global satellite-based soil moisture estimates. The aim of this study was to test the suitability of the CRP to provide spatial estimates of soil moisture. The CRP was set up and calibrated in Cathedral Peak Catchment VI. An in-situ soil moisture network consisting of time-domain reflectometry and Echo probes was created in Catchment VI, and was used to validate the CRP soil moisture estimates. Once calibrated, the CRP was found to provide spatial estimates of soil moisture, which correlated well with the in-situ soil moisture network data set and yielded an R2 value of 0.845. The use of the CRP for soil moisture monitoring provided reliable, accurate and continuous soil moisture estimates over the catchment area. The wealth of current and potential applications makes the CRP very appealing for scientists and engineers in various fields. Significance: • The cosmic ray probe provides spatial estimates of surface soil moisture at an intermediate scale of 18 hectares. • A single cosmic ray probe can replace a network of conventional in-situ instruments to provide reliable soil moisture estimates. • The cosmic ray probe is capable of estimating soil moisture in previously problematic areas (saline soil, wetlands, rocky soil). • Cosmic ray probes can provide data for hydro-meteorologists interested in land–atmosphere interactions. • The cosmic ray probe estimates can be promising for remote sensing scientists for product calibration and validation.


2021 ◽  
Vol 13 (3) ◽  
pp. 537
Author(s):  
Deepti B Upadhyaya ◽  
Jonathan Evans ◽  
Sekhar Muddu ◽  
Sat Kumar Tomer ◽  
Ahmad Al Bitar ◽  
...  

Availability of global satellite based Soil Moisture (SM) data has promoted the emergence of many applications in climate studies, agricultural water resource management and hydrology. In this context, validation of the global data set is of substance. Remote sensing measurements which are representative of an area covering 100 m2 to tens of km2 rarely match with in situ SM measurements at point scale due to scale difference. In this paper we present the new Indian Cosmic Ray Network (ICON) and compare it’s data with remotely sensed SM at different depths. ICON is the first network in India of the kind. It is operational since 2016 and consist of seven sites equipped with the COSMOS instrument. This instrument is based on the Cosmic Ray Neutron Probe (CRNP) technique which uses non-invasive neutron counts as a measure of soil moisture. It provides in situ measurements over an area with a radius of 150–250 m. This intermediate scale soil moisture is of interest for the validation of satellite SM. We compare the COSMOS derived soil moisture to surface soil moisture (SSM) and root zone soil moisture (RZSM) derived from SMOS, SMAP and GLDAS_Noah. The comparison with surface soil moisture products yield that the SMAP_L4_SSM showed best performance over all the sites with correlation (R) values ranging from 0.76 to 0.90. RZSM on the other hand from all products showed lesser performances. RZSM for GLDAS and SMAP_L4 products show that the results are better for the top layer R = 0.75 to 0.89 and 0.75 to 0.90 respectively than the deeper layers R = 0.26 to 0.92 and 0.6 to 0.8 respectively in all sites in India. The ICON network will be a useful tool for the calibration and validation activities for future SM missions like the NASA-ISRO Synthetic Aperture Radar (NISAR).


2021 ◽  
Vol 9 ◽  
Author(s):  
Nitu Ojha ◽  
Olivier Merlin ◽  
Christophe Suere ◽  
Maria José Escorihuela

DISPATCH is a disaggregation algorithm of the low-resolution soil moisture (SM) estimates derived from passive microwave observations. It provides disaggregated SM data at typically 1 km resolution by using the soil evaporative efficiency (SEE) estimated from optical/thermal data collected around solar noon. DISPATCH is based on the relationship between the evapo-transpiration rate and the surface SM under non-energy-limited conditions and hence is well adapted for semi-arid regions with generally low cloud cover and sparse vegetation. The objective of this paper is to extend the spatio-temporal coverage of DISPATCH data by 1) including more densely vegetated areas and 2) assessing the usefulness of thermal data collected earlier in the morning. Especially, we evaluate the performance of the Temperature Vegetation Dryness Index (TVDI) instead of SEE in the DISPATCH algorithm over vegetated areas (called vegetation-extended DISPATCH) and we quantify the increase in coverage using Sentinel-3 (overpass at around 09:30 am) instead of MODIS (overpass at around 10:30 am and 1:30 pm for Terra and Aqua, respectively) data. In this study, DISPATCH is applied to 36 km resolution Soil Moisture Active and Passive SM data over three 50 km by 50 km areas in Spain and France to assess the effectiveness of the approach over temperate and semi-arid regions. The use of TVDI within DISPATCH increases the coverage of disaggregated images by 9 and 14% over the temperate and semi-arid sites, respectively. Moreover, including the vegetated pixels in the validation areas increases the overall correlation between satellite and in situ SM from 0.36 to 0.43 and from 0.41 to 0.79 for the temperate and semi-arid regions, respectively. The use of Sentinel-3 can increase the spatio-temporal coverage by up to 44% over the considered MODIS tile, while the overlapping disaggregated data sets derived from Sentinel-3 and MODIS land surface temperature data are strongly correlated (around 0.7). Additionally, the correlation between satellite and in situ SM is significantly better for DISPATCH (0.39–0.80) than for the Copernicus Sentinel-1-based (−0.03 to 0.69) and SMAP/S1 (0.37–0.74) product over the three studies (temperate and semi-arid) areas, with an increase in yearly valid retrievals for the vegetation-extended DISPATCH algorithm.


Sign in / Sign up

Export Citation Format

Share Document