scholarly journals Radar Signal Modulation Recognition Based on Sep-ResNet

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7474
Author(s):  
Yongjiang Mao ◽  
Wenjuan Ren ◽  
Zhanpeng Yang

With the development of signal processing technology and the use of new radar systems, signal aliasing and electronic interference have occurred in space. The electromagnetic signals have become extremely complicated in their current applications in space, causing difficult problems in terms of accurately identifying radar-modulated signals in low signal-to-noise ratio (SNR) environments. To address this problem, in this paper, we propose an intelligent recognition method that combines time–frequency (T–F) analysis and a deep neural network to identify radar modulation signals. The T–F analysis of the complex Morlet wavelet transform (CMWT) method is used to extract the characteristics of signals and obtain the T–F images. Adaptive filtering and morphological processing are used in T–F image enhancement to reduce the interference of noise on signal characteristics. A deep neural network with the channel-separable ResNet (Sep-ResNet) is used to classify enhanced T–F images. The proposed method completes high-accuracy intelligent recognition of radar-modulated signals in a low-SNR environment. When the SNR is −10 dB, the probability of successful recognition (PSR) is 93.44%.

Author(s):  
Lutao Liu ◽  
Xinyu Li

AbstractRecently, due to the wide application of low probability of intercept (LPI) radar, lots of recognition approaches about LPI radar signal modulations have been proposed. However, facing the increasingly complex electromagnetic environment, most existing methods have poor performance to identify different modulation types in low signal-to-noise ratio (SNR). This paper proposes an automatic recognition method for different LPI radar signal modulations. Firstly, time-domain signals are converted to time-frequency images (TFIs) by smooth pseudo-Wigner–Ville distribution. Then, these TFIs are fed into a designed triplet convolutional neural network (TCNN) to obtain high-dimensional feature vectors. In essence, TCNN is a CNN network that triplet loss is adopted to optimize parameters of the network in the training process. The participation of triplet loss can ensure that the distance between samples in different classes is greater than that between samples with the same label, improving the discriminability of TCNN. Eventually, a fully connected neural network is employed as the classifier to recognize different modulation types. Simulation shows that the overall recognition success rate can achieve 94% at − 10 dB, which proves the proposed method has a strong discriminating capability for the recognition of different LPI radar signal modulations, even under low SNR.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ji Li ◽  
Huiqiang Zhang ◽  
Jianping Ou ◽  
Wei Wang

In the increasingly complex electromagnetic environment of modern battlefields, how to quickly and accurately identify radar signals is a hotspot in the field of electronic countermeasures. In this paper, USRP N210, USRP-LW N210, and other general software radio peripherals are used to simulate the transmitting and receiving process of radar signals, and a total of 8 radar signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and OFDM, are produced. The signal obtains time-frequency images (TFIs) through the Choi–Williams distribution function (CWD). According to the characteristics of the radar signal TFI, a global feature balance extraction module (GFBE) is designed. Then, a new IIF-Net convolutional neural network with fewer network parameters and less computation cost has been proposed. The signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. The experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition rate and better robustness under low SNR.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Runlan Tian ◽  
Guoyi Zhang ◽  
Rui Zhou ◽  
Wei Dong

A novel effective detection method is proposed for electronic intelligence (ELINT) systems detecting polyphase codes radar signal in the low signal-to-noise ratio (SNR) scenario. The core idea of the proposed method is first to calculate the time-frequency distribution of polyphase codes radar signals via Wigner-Ville distribution (WVD); then the modified Hough transform (HT) is employed to cumulate all the energy of WVD’s ridges effectively to achieve signal detection. Compared with the generalised Wigner Hough transform (GWHT) method, the proposed method has a superior performance in low SNR and is not sensitive to the code type. Simulation results verify the validity of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


2021 ◽  
Author(s):  
Francisco Mondragon ◽  
Jonathan Jimenez ◽  
Mariko Nakano ◽  
Toru Nakashika ◽  
Hector Perez-Meana

The development of acoustic scenes recognition systems has been a topic of extensive research due to its applications in several fields of science and engineering. This paper proposes an environmental system in which firstly a time-frequency representation is obtained using the Continuous Wavelet Transform (CWT). The time frequency representation is then represented as a color image using the Viridis color map, which is then inserted into a Deep Neural Network (DNN) to carry out the classification task. Evaluation results using several public data bases show that proposed scheme provides a classification performance better than the performance provided by other previously proposed schemes.


2019 ◽  
Vol 78 (23) ◽  
pp. 33549-33572
Author(s):  
Mohammed Salah Al-Radhi ◽  
Tamás Gábor Csapó ◽  
Géza Németh

Abstract In this paper, a novel vocoder is proposed for a Statistical Voice Conversion (SVC) framework using deep neural network, where multiple features from the speech of two speakers (source and target) are converted acoustically. Traditional conversion methods focus on the prosodic feature represented by the discontinuous fundamental frequency (F0) and the spectral envelope. Studies have shown that speech analysis/synthesis solutions play an important role in the overall quality of the converted voice. Recently, we have proposed a new continuous vocoder, originally for statistical parametric speech synthesis, in which all parameters are continuous. Therefore, this work introduces a new method by using a continuous F0 (contF0) in SVC to avoid alignment errors that may happen in voiced and unvoiced segments and can degrade the converted speech. Our contribution includes the following. (1) We integrate into the SVC framework the continuous vocoder, which provides an advanced model of the excitation signal, by converting its contF0, maximum voiced frequency, and spectral features. (2) We show that the feed-forward deep neural network (FF-DNN) using our vocoder yields high quality conversion. (3) We apply a geometric approach to spectral subtraction (GA-SS) in the final stage of the proposed framework, to improve the signal-to-noise ratio of the converted speech. Our experimental results, using two male and one female speakers, have shown that the resulting converted speech with the proposed SVC technique is similar to the target speaker and gives state-of-the-art performance as measured by objective evaluation and subjective listening tests.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Bin Liu ◽  
Youqian Feng ◽  
Zhonghai Yin ◽  
Xiangyu Fan

Present radar signal emitter recognition approaches suffer from a dependency on prior information. Moreover, modern emitter recognition must meet the challenges associated with low probability of intercept technology and other obscuration methodologies based on complex signal modulation and must simultaneously provide a relatively strong ability for extracting weak signals under low SNR values. Therefore, the present article proposes an emitter recognition approach that combines ensemble empirical mode decomposition (EEMD) with the generalized S-transform (GST) for promoting enhanced recognition ability for radar signals with complex modulation under low signal-to-noise ratios in the absence of prior information. The results of Monte Carlo simulations conducted using various mixed signals with additive Gaussian white noise are reported. The results verify that EEMD suppresses the occurrence of mode mixing commonly observed using standard empirical mode decomposition. In addition, EEMD is shown to extract meaningful signal features even under low SNR values, which demonstrates its ability to suppress noise. Finally, EEMD-GST is demonstrated to provide an obviously better time-frequency focusing property than that of either the standard S-transform or the short-time Fourier transform.


Sign in / Sign up

Export Citation Format

Share Document