scholarly journals An Augmented Reality Periscope for Submarines with Extended Visual Classification

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7624
Author(s):  
André Breitinger ◽  
Esteban Clua ◽  
Leandro A. F. Fernandes

Submarines are considered extremely strategic for any naval army due to their stealth capability. Periscopes are crucial sensors for these vessels, and emerging to the surface or periscope depth is required to identify visual contacts through this device. This maneuver has many procedures and usually has to be fast and agile to avoid exposure. This paper presents and implements a novel architecture for real submarine periscopes developed for future Brazilian naval fleet operations. Our system consists of a probe that is connected to the craft and carries a 360 camera. We project and take the images inside the vessel using traditional VR/XR devices. We also propose and implement an efficient computer vision-based MR technique to estimate and display detected vessels effectively and precisely. The vessel detection model is trained using synthetic images. So, we built and made available a dataset composed of 99,000 images. Finally, we also estimate distances of the classified elements, showing all the information in an AR-based interface. Although the probe is wired-connected, it allows for the vessel to stand in deep positions, reducing its exposure and introducing a new way for submarine maneuvers and operations. We validate our proposal through a user experience experiment using 19 experts in periscope operations.

2019 ◽  
Vol 11 (4) ◽  
pp. 459 ◽  
Author(s):  
Jan Čejka ◽  
Fabio Bruno ◽  
Dimitrios Skarlatos ◽  
Fotis Liarokapis

Augmented reality can be deployed in various application domains, such as enhancing human vision, manufacturing, medicine, military, entertainment, and archeology. One of the least explored areas is the underwater environment. The main benefit of augmented reality in these environments is that it can help divers navigate to points of interest or present interesting information about archaeological and touristic sites (e.g., ruins of buildings, shipwrecks). However, the harsh sea environment affects computer vision algorithms and complicates the detection of objects, which is essential for augmented reality. This paper presents a new algorithm for the detection of fiducial markers that is tailored to underwater environments. It also proposes a method that generates synthetic images with such markers in these environments. This new detector is compared with existing solutions using synthetic images and images taken in the real world, showing that it performs better than other detectors: it finds more markers than faster algorithms and runs faster than robust algorithms that detect the same amount of markers.


2018 ◽  
Vol 1 (2) ◽  
pp. 17-23
Author(s):  
Takialddin Al Smadi

This survey outlines the use of computer vision in Image and video processing in multidisciplinary applications; either in academia or industry, which are active in this field.The scope of this paper covers the theoretical and practical aspects in image and video processing in addition of computer vision, from essential research to evolution of application.In this paper a various subjects of image processing and computer vision will be demonstrated ,these subjects are spanned from the evolution of mobile augmented reality (MAR) applications, to augmented reality under 3D modeling and real time depth imaging, video processing algorithms will be discussed to get higher depth video compression, beside that in the field of mobile platform an automatic computer vision system for citrus fruit has been implemented ,where the Bayesian classification with Boundary Growing to detect the text in the video scene. Also the paper illustrates the usability of the handed interactive method to the portable projector based on augmented reality.   © 2018 JASET, International Scholars and Researchers Association


2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


Author(s):  
Gilles Simon

It is generally accepted that Jan van Eyck was unaware of perspective. However, an a-contrario analysis of the vanishing points in five of his paintings, realized between 1432 and 1439, unveils a recurring fishbone-like pattern that could only emerge from the use of a polyscopic perspective machine with two degrees of freedom. A 3D reconstruction of Arnolfini Portrait compliant with this pattern suggests that van Eyck's device answered a both aesthetic and scientific questioning on how to represent space as closely as possible to human vision. This discovery makes van Eyck the father of today's immersive and nomadic creative media such as augmented reality and synthetic holography.


2018 ◽  
Vol 5 ◽  
Author(s):  
Kaj Helin ◽  
Timo Kuula ◽  
Carlo Vizzi ◽  
Jaakko Karjalainen ◽  
Alla Vovk

2021 ◽  
Author(s):  
B Wang ◽  
Tane Moleta ◽  
Marc Aurel Schnabel

Technology inevitably evolves and develops rapidly in the modern era, industries and professions continue to strive in integrating, adapting and utilising these advancements to improve, optimise and improve the process of design to manufacture to the user experience. One such system that fits into this category is the advent of Virtual Reality and Augmented Reality. The numerous possibilities to which these visually and spatially immersive systems opportunities for immense innovation often lacks direction or an ultimate goal thus rendering this piece of software to often be little more than a visualisation tool.This paper recognises the unique position that VR allows and seeks to interrogate and deconstruct current, traditional design processes to better utilise VR in aiding and reinforcing the idea of partial testing of ideas and concepts throughout the design cycle. Different sciences such as psychology, processes and automation from computational design and considerations within software development will be employed and injected into the broader architectural context in which this research presides. In addition to the VR headset, eye tracking external hardware are integrated to develop a seamless tool and workflow that allows us, as designers to better interrogate clients behaviour within our designed digital representations which leads to validations, evaluations and criticisms of our actions within the architectural realm.


Sign in / Sign up

Export Citation Format

Share Document