scholarly journals CoMeT: Configurable Tagged Memory Extension

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7771
Author(s):  
Jinjae Lee ◽  
Derry Pratama ◽  
Minjae Kim ◽  
Howon Kim ◽  
Donghyun Kwon

Commodity processor architectures are releasing various instruction set extensions to support security solutions for the efficient mitigation of memory vulnerabilities. Among them, tagged memory extension (TME), such as ARM MTE and SPARC ADI, can prevent unauthorized memory access by utilizing tagged memory. However, our analysis found that TME has performance and security issues in practical use. To alleviate these, in this paper, we propose CoMeT, a new instruction set extension for tagged memory. The key idea behind CoMeT is not only to check whether the tag values in the address tag and memory tag are matched, but also to check the access permissions for each tag value. We implemented the prototype of CoMeT on the RISC-V platform. Our evaluation results confirm that CoMeT can be utilized to efficiently implement well-known security solutions, i.e., shadow stack and in-process isolation, without compromising security.

2012 ◽  
Vol 2 (1) ◽  
pp. 1-18 ◽  
Author(s):  
P. Grabher ◽  
J. Großschädl ◽  
S. Hoerder ◽  
K. Järvinen ◽  
D. Page ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 465 ◽  
Author(s):  
Krzysztof Marcinek ◽  
Witold A. Pleskacz

This work presents the results of research toward designing an instruction set extension dedicated to Global Navigation Satellite System (GNSS) baseband processing. The paper describes the state-of-the-art techniques of GNSS receiver implementation. Their advantages and disadvantages are discussed. Against this background, a new versatile instruction set extension for GNSS baseband processing is presented. The authors introduce improved mechanisms for instruction set generation focused on multi-channel processing. The analytical approach used by the authors leads to the introduction of a GNSS-instruction set extension (ISE) for GNSS baseband processing. The developed GNSS-ISE is simulated extensively using PC software and field-programmable gate array (FPGA) emulation. Finally, the developed GNSS-ISE is incorporated into the first-in-the-world, according to the authors’ best knowledge, integrated, multi-frequency, and multi-constellation microcontroller with embedded flash memory. Additionally, this microcontroller may serve as an application processor, which is a unique feature. The presented results show the feasibility of implementing the GNSS-ISE into an embedded microprocessor system and its capability of performing baseband processing. The developed GNSS-ISE can be implemented in a wide range of applications including smart IoT (internet of things) devices or remote sensors, fostering the adaptation of multi-frequency and multi-constellation GNSS receivers to the low-cost consumer mass-market.


Author(s):  
Gabriel H. Eisenkraemer ◽  
Fernando G. Moraes ◽  
Leonardo L. de Oliveira ◽  
Everton Carara

Sign in / Sign up

Export Citation Format

Share Document