scholarly journals Completion of Metal-Damaged Traces Based on Deep Learning in Sinogram Domain for Metal Artifacts Reduction in CT Images

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8164
Author(s):  
Linlin Zhu ◽  
Yu Han ◽  
Xiaoqi Xi ◽  
Lei Li ◽  
Bin Yan

In computed tomography (CT) images, the presence of metal artifacts leads to contaminated object structures. Theoretically, eliminating metal artifacts in the sinogram domain can correct projection deviation and provide reconstructed images that are more real. Contemporary methods that use deep networks for completing metal-damaged sinogram data are limited to discontinuity at the boundaries of traces, which, however, lead to secondary artifacts. This study modifies the traditional U-net and adds two sinogram feature losses of projection images—namely, continuity and consistency of projection data at each angle, improving the accuracy of the complemented sinogram data. Masking the metal traces also ensures the stability and reliability of the unaffected data during metal artifacts reduction. The projection and reconstruction results and various evaluation metrics reveal that the proposed method can accurately repair missing data and reduce metal artifacts in reconstructed CT images.

2021 ◽  
Author(s):  
Hoon Ko ◽  
Jimi Huh ◽  
Kyung Won Kim ◽  
Heewon Chung ◽  
Yousun Ko ◽  
...  

BACKGROUND Detection and quantification of intraabdominal free fluid (i.e., ascites) on computed tomography (CT) are essential processes to find emergent or urgent conditions in patients. In an emergent department, automatic detection and quantification of ascites will be beneficial. OBJECTIVE We aimed to develop an artificial intelligence (AI) algorithm for the automatic detection and quantification of ascites simultaneously using a single deep learning model (DLM). METHODS 2D deep learning models (DLMs) based on a deep residual U-Net, U-Net, bi-directional U-Net, and recurrent residual U-net were developed to segment areas of ascites on an abdominopelvic CT. Based on segmentation results, the DLMs detected ascites by classifying CT images into ascites images and non-ascites images. The AI algorithms were trained using 6,337 CT images from 160 subjects (80 with ascites and 80 without ascites) and tested using 1,635 CT images from 40 subjects (20 with ascites and 20 without ascites). The performance of AI algorithms was evaluated for diagnostic accuracy of ascites detection and for segmentation accuracy of ascites areas. Of these DLMs, we proposed an AI algorithm with the best performance. RESULTS The segmentation accuracy was the highest in the deep residual U-Net with a mean intersection over union (mIoU) value of 0.87, followed by U-Net, bi-directional U-Net, and recurrent residual U-net (mIoU values 0.80, 0.77, and 0.67, respectively). The detection accuracy was the highest in the deep residual U-net (0.96), followed by U-Net, bi-directional U-net, and recurrent residual U-net (0.90, 0.88, and 0.82, respectively). The deep residual U-net also achieved high sensitivity (0.96) and high specificity (0.96). CONCLUSIONS We propose the deep residual U-net-based AI algorithm for automatic detection and quantification of ascites on abdominopelvic CT scans, which provides excellent performance.


Author(s):  
Genwei Ma ◽  
Xing Zhao ◽  
Yining Zhu ◽  
Huitao Zhang

Abstract To solve the problem of learning based computed tomography (CT) reconstruction, several reconstruction networks were invented. However, applying neural network to tomographic reconstruction still remains challenging due to unacceptable memory space requirement. In this study, we presents a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which, respectively, correspond to the filter and back-projection of FBP method. The first module of LBRN decouples the relationship of Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection module, can use the block reconstruction strategy. Due to each image block is only connected with part filtered projection data, the network structure is greatly simplified and the parameters of the whole network is dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest (ROI), metal artifacts reduction and real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.


2022 ◽  
Author(s):  
Vijay Kumar Gugulothu ◽  
Savadam Balaji

Abstract Detection of malignant lung nodules at an early stage may allow for clinical interventions that increase the survival rate of lung cancer patients. The use of hybrid deep learning techniques to detect nodules will improve the sensitivity of lung cancer screening and the interpretation speed of lung scans.Accurate detection of lung nodes is an important step in computed tomography (CT) imaging to detect lung cancer. However, it is very difficult to identify strong nodes due to the diversity of lung nodes and the complexity of the surrounding environment.Here, we proposed alung nodule detection and classification with CT images based on hybrid deep learning (LNDC-HDL) techniques. First, we introduce achaotic bird swarm optimization (CBSO) algorithm for lung nodule segmentation using statistical information. Second, we illustrate anImproved Fish Bee (IFB) algorithm for feature extraction and selection process. Third, we develop hybrid classifier i.e. hybrid differential evolution based neural network (HDE-NN) for tumor prediction and classification.Experimental results have shown that the use of computed tomography, which demonstrates the efficiency and importance of the HDE-NN specific structure for detecting lung nodes on CT scans, increases sensitivity and reduces the number of false positives. The proposed method shows that the benefits of HDE-NN node detection can be reaped by combining clinical practice.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yafen Li ◽  
Wen Li ◽  
Jing Xiong ◽  
Jun Xia ◽  
Yaoqin Xie

Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.


Author(s):  
Yongbin Zhang ◽  
Lifei Zhang ◽  
X. Ronald Zhu ◽  
Andrew K. Lee ◽  
Mark Chambers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document