scholarly journals A Sensitive Electrochemical Sensor Based on Sonogel-Carbon Material Enriched with Gold Nanoparticles for Melatonin Determination

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 120
Author(s):  
Cecilia Lete ◽  
David López-Iglesias ◽  
Juan José García-Guzmán ◽  
Sorina-Alexandra Leau ◽  
Adina Elena Stanciu ◽  
...  

In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.

2021 ◽  
Author(s):  
Ram Bhattarai ◽  
Sanam Pudasaini ◽  
Mukesh Sah ◽  
Bhanu Neupane ◽  
Basant Giri

The COVID-19 pandemic has highlighted the need of eco-friendly and locally or distributed manufacturing of diagnostic and safety products. Here, we characterized five handmade papers for their potential application to make paper analytical device (PADs). The handmade papers were made from locally available plant fiber using eco-friendly method. Thickness, grammage, and apparent density of the paper samples ranged from 198 μm to 314 μm, 49 g/m2 to 117.8 g/m2, and 0.23 to 0.39 g/cm3, respectively. Moisture content, water filtration and wicking speed ranged from 5.2% to 7.1%, 35.7 to 156.7, and 0.062 to 0.124 mms-1, respectively. Further, water contact angle and porosity ranged from 76˚ to 112˚ and 79% to 83%, respectively. The best paper sample one was chosen to fabricate PADs which were used for the determination of metformin. The metformin assay on PADs followed linear range from 0.0625 to 0.5 mg/mL. The assay had limit of detection and limit of quantitation of 0.05 mg/mL and 0.18 mg/mL respectively. The new method was used to test metformin samples (n=20) collected from local pharmacies. The average amount of metformin concentration in samples was 465.6 ± 15.1mg/tablet. Three samples did not meet the regulatory standards. When compared with spectrophotometric method, PADs assay correctly predicted 18 out of 20 samples. The PADs assay on handmade paper may provide a low-cost and easy-to-use system to screening the quality of drugs and other point-of-need applications.


2020 ◽  
Vol 30 (4) ◽  
pp. 345
Author(s):  
Bich Ngoc Nguyen Thi ◽  
Viet Ha Chu ◽  
Thi Thuy Nguyen ◽  
Trong Nghia Nguyen ◽  
Hong Nhung Tran

A flexible low-cost paper-based surface enhanced Raman scattering (SERS) substrate was successfully manufactured by a direct chemical reduction of silver nanoparticles (AgNPs) onto a common commercially available filter paper. Characterization of fabricated paper-based SERS substrate and the influences of the silver nitrate concentration, type of paper on SERS signal were systematically investigated. In order to fabricate SERS substrates with the highest quality, a suitable one from four different types of filter papers was chosen. The prepared SERS substrates have capability for detecting food toxic chemicals. The test of detecting melamine in aqueous solution was successfully demonstrated with the limit of detection for melamine is 10-7M.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1371
Author(s):  
Rayhane Zribi ◽  
Antonino Foti ◽  
Maria Grazia Donato ◽  
Pietro Giuseppe Gucciardi ◽  
Giovanni Neri

The preparation and characterization of a hybrid composite, based on carbon cloth (CC) matrix functionalized with two-dimensional (2D) MoS2 flakes and MoO3, and its use for developing an electrochemical sensor for the determination of riboflavin (RF) is here reported. The 2D-MoS2-MoO3CC composite was prepared by depositing 2D-MoS2 nanosheets, obtained by liquid phase exfoliation (LPE), on the surface of a carbon cloth fiber network, previously functionalized with a layer of molybdenum oxide (α-MoO3) by radio-frequency magnetron reactive sputtering technique. The 2D-MoS2-MoO3CC composite was characterized by scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX), and Raman spectroscopy. An electrochemical sensor has been then fabricated by fixing a slice of the 2D-MoS2-MoO3CC composite on the working electrode of a screen-printed carbon electrode (SPCE). The 2D-MoS2-MoO3-CC/SPCE sensor display good electrochemical characteristics which have been exploited, for the first time, in the electroanalytical determination of riboflavin (RF). The sensitivity to RF, equal to 0.67 µA mM−1 in the linear range from 2 to 40 µM, and a limit of detection (LOD) of 1.5 µM at S/N = 3, demonstrate the promising characteristics of the proposed 2D-MoS2-MoO3-CC/SPCE electrochemical sensor for the determination of riboflavin.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4037 ◽  
Author(s):  
Emilia Witkowska Nery ◽  
Magdalena Kundys-Siedlecka ◽  
Yoshitaka Furuya ◽  
Martin Jönsson-Niedziółka

We present an electrochemical, microfluidic system with a working electrode based on an ordered 3D array of pencil leads. The electrode array was integrated into a plexiglass/PDMS channel. We tested the setup using a simple redox probe and compared the results with computer simulations. As a proof of concept application of the device we showed that the setup can be used for determination of dopamine concentration in physiological pH and ultrasensitive, although only qualitative, detection of p-nitrophenol with a limit of detection below 1 nmol L−1. The observed limit of detection for p-nitrophenol is not only much lower than achieved with similar methods but also sufficient for evaluation of exposure to pesticides such as methyl parathion through urinalysis. This low cost setup can be fabricated without the need for clean room facilities and in the future, due to the ordered structure of the electrode could be used to better understand the process of electroanalysis and electrode functionalization. To the best of our knowledge it is the first application of pencil leads as 3D electrochemical sensor in a microfluidic channel.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3566 ◽  
Author(s):  
Francesco Tavella ◽  
Claudio Ampelli ◽  
Salvatore Leonardi ◽  
Giovanni Neri

In this paper, the development of a nanoporous TiO2 array-modified Ti electrode for photo-electrochemical (PEC) sensing of dopamine (DA) is reported. A porous TiO2 array-modified electrode was fabricated from the controlled anodic oxidation of a Ti working electrode of commercial screen-printed electrodes (SPE). The anodization process and the related morphological and microstructural transformation of the bare Ti electrode into a TiO2/Ti electrode was followed by scanning electron microscopy (SEM) and UV-visible reflectance spectroscopy (DR-UV-Vis). The modified electrode was irradiated with a low-power (120 mW) UV-Vis LED lamp (λ = 400 nm) and showed good performance for the detection of DA with a large linear response range, a sensitivity of 462 nA mM−1 cm−2, and a limit of detection of 20 µM. Moreover, it showed higher photocurrents in the presence of DA in comparison to some foreign species such as ascorbic acid, uric acid, glucose, K+, Na+, and Cl−. Thus, this proposed low-cost photo-electrochemical sensor, with the advantage of very simple fabrication, demonstrates potential applications for the determination of dopamine in real samples.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wilson Silva Fernandes-Junior ◽  
Leticia Fernanda Zaccarin ◽  
Geiser Gabriel Oliveira ◽  
Paulo Roberto de Oliveira ◽  
Cristiane Kalinke ◽  
...  

The use of nanostructured materials is already well-known as a powerful tool in the development of electrochemical sensors. Among several immobilization strategies of nanomaterials in the development of electrochemical sensors, the use of low-cost and environmentally friendly polymeric materials is highlighted. In this context, a new nanostructured biocomposite electrode is proposed as an electrochemical sensor for the analysis and determination of tetracycline. The composite electrode consists of a modified glassy carbon electrode (GCE) with a nanodiamond-based (ND) and manioc starch biofilm (MS), called ND-MS/GCE. The proposed sensor showed better electrochemical performance in the presence of tetracycline in comparison to the unmodified electrode, which was attributed to the increase in the electroactive surface area due to the presence of nanodiamonds. A linear dynamic range from 5.0 × 10 − 6 to 1.8 × 10 − 4  mol L−1 and a limit of detection of 2.0 × 10 − 6  mol L−1 were obtained for the proposed sensor. ND-MS/GCE exhibited high repeatability and reproducibility for successive measurements with a relative standard deviation (RSD) of 6.3% and 1.5%, respectively. The proposed electrode was successfully applied for the detection of tetracycline in different kinds of water samples, presenting recoveries ranging from 86 to 112%.


Author(s):  
Yong-Shan MA ◽  
Feng-Xia ZHANG ◽  
Pei-Gang LI ◽  
Jun-Sen WU ◽  
Hui-Xue REN

2020 ◽  
Vol 16 (4) ◽  
pp. 424-437
Author(s):  
Kubra Ozturk ◽  
Nurgul K. Bakirhan ◽  
Sibel A. Ozkan ◽  
Bengi Uslu

Background:: new and selective electrochemical sensor was developed for the determination of levocetirizine dihydrochloride, which is an antihistaminic drug. Method:: The investigation was performed by using cyclic, differential pulse and square wave voltammetric methods on the β-cyclodextrin modified glassy carbon electrode. It is thereby planned to obtain information about levocetirizine determination and its mechanism. Result:: The efficiency of experimental parameters including pH, scan rate, and accumulation potential and time on the anodic response of levocetirizine dihydrochloride was studied. By employing the developed method and under optimized conditions, the current showed linear dependence with a concentration in the range between 2 × 10-8 M and 6 × 10-6 M in pH 2.0 Britton Robinson (BR) buffer. Conclusion:: The achieved limits of detection and quantification were found as 3.73 × 10-10 M and 1.24 × 10-9 M, respectively. In addition, the possibility of applying the developed sensor for real sample analysis was investigated, so β-cyclodextrin modified glassy carbon electrode was used to determine levocetirizine dihydrochloride in Xyzal® tablet dosage form. Finally, this sensor was successfully applied to the real sample as a selective, simple, reproducible, repeatable electrochemical sensor.


Sign in / Sign up

Export Citation Format

Share Document