scholarly journals Characterization of handmade Nepali paper as a platform for paper analytical device to determine anti-diabetic drug

Author(s):  
Ram Bhattarai ◽  
Sanam Pudasaini ◽  
Mukesh Sah ◽  
Bhanu Neupane ◽  
Basant Giri

The COVID-19 pandemic has highlighted the need of eco-friendly and locally or distributed manufacturing of diagnostic and safety products. Here, we characterized five handmade papers for their potential application to make paper analytical device (PADs). The handmade papers were made from locally available plant fiber using eco-friendly method. Thickness, grammage, and apparent density of the paper samples ranged from 198 μm to 314 μm, 49 g/m2 to 117.8 g/m2, and 0.23 to 0.39 g/cm3, respectively. Moisture content, water filtration and wicking speed ranged from 5.2% to 7.1%, 35.7 to 156.7, and 0.062 to 0.124 mms-1, respectively. Further, water contact angle and porosity ranged from 76˚ to 112˚ and 79% to 83%, respectively. The best paper sample one was chosen to fabricate PADs which were used for the determination of metformin. The metformin assay on PADs followed linear range from 0.0625 to 0.5 mg/mL. The assay had limit of detection and limit of quantitation of 0.05 mg/mL and 0.18 mg/mL respectively. The new method was used to test metformin samples (n=20) collected from local pharmacies. The average amount of metformin concentration in samples was 465.6 ± 15.1mg/tablet. Three samples did not meet the regulatory standards. When compared with spectrophotometric method, PADs assay correctly predicted 18 out of 20 samples. The PADs assay on handmade paper may provide a low-cost and easy-to-use system to screening the quality of drugs and other point-of-need applications.

2009 ◽  
Vol 6 (s1) ◽  
pp. S163-S170 ◽  
Author(s):  
R. Singh Gujral ◽  
S. Manirul Haque ◽  
P. Shanker

An accurate and validated spectrophotometric method was developed for the determination of gabapentin. This is simple, sensitive and low cost UV spectrophotometric method. The method is based on the direct measurement of the native absorbance of the drug. The detection was done at 210 nm. The method was linear in the range of 0.25 - 3.5 µ g/mL with correlation coefficient of 0.9999. It is validated according to the ICH guidelines with respect to linearity, selectivity, accuracy and precision, limit of quantitation and limit of detection. The method has been applied to assess gabapentin in pharmaceutical formulations with good accuracy and precision and relatively free of interference from coexisting substances.


Author(s):  
Qian Wang ◽  
Xiaobin Li ◽  
Zhihan Zheng ◽  
Huitao Liu ◽  
Yuan Gao

Abstract A sweeping micellar electrokinetic chromatography (sweeping-MEKC) method was developed for the determination of 1,7-naphthalenediol, 2,3-naphthalenediol, 1,5-naphthalenediol and 2,7-naphthalenediol in cosmetics. Several parameters affecting sweeping-MEKC method were studied systematically and the separation conditions were optimized as 20 mM NaH2PO4–110 mM SDS and 40% (v/v) MeOH (pH 2.4), with −22 kV applied voltage and UV detection at 230 nm. The sample matrix is 60 mmol L−1 NaH2PO4 and sample introduction was performed at 3 psi for 6 s. Separation of the four naphthalenediols was completed in less than 17 min. Limit of detection (LOD) and limit of quantitation (LOQ) are 0.0045∼0.0094 μg mL−1 and 0.015∼0.031 μg mL−1. Linear relationship (r 2 > 0.999) is satisfactory at the range of 0.1–10 μg mL−1. The developed method has been successfully applied to the determination of the four naphthalenediols in real cosmetic samples, with recoveries in foundation, sun cream and lotion in the range of 92.3%∼106.8% and relative standard deviation (RSD) less than 4.15%. A HPLC method described in the National Standards of the People’s Republic of China was carried out for the comparison with the proposed method. The results showed that the proposed sweeping-MEKC method has the advantages of fast, low cost with comparative sensitivity.


2012 ◽  
Vol 12 (3) ◽  
pp. 268-272 ◽  
Author(s):  
Latifah K Darusman ◽  
Mohamad Rafi ◽  
Wulan Tri Wahyuni ◽  
Rizna Azrianiningsari

A new ultraviolet derivative spectrophotometry (UVDS) method has been developed for determination of reserpine in antihypertension tablets. A first-order UVDS based on the measurement of the distance between peaks to baseline (DZ) at the wavelength of 312 nm was used. Evaluation of analytical performance showed that accuracy as percentage recovery was 99.18-101.13%, precision expressed as relative standard deviation (RSD) was 1.91% and linear correlation was also obtained 0.9998 in the range of 10-50 µg/mL. Estimation of limit of detection and limit of quantitation was 0.8868 µg/mL and 2.6874 µg/mL, respectively. As a reference method, HPLC methods from United States Pharmacopiea (USP) were used. Commercially tablets available were analyzed by the two methods. The content of reserpine in tablets was found 0.2260±0.0033 mg by UVDS and 0.2301±0.0051 mg by the USP methods. The result obtained from the two methods was compared statistically using F-test and t-test and showed no significant differences between the variance and mean values of the two methods at 95% confidence level. This method was faster, easier, low cost and gave result as well as the reference method published by USP.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Fumitoshi Satoh ◽  
Yoshikiyo Ono ◽  
Kei Omata ◽  
Yuta Tezuka ◽  
Hiroaki Yamanami ◽  
...  

Abstract Background Measurement of plasma aldosterone and renin concentration, or activity, is useful for selecting antihypertensive agents anddetecting hyperaldosteronism in hypertensive patients. However, it takes several days to get results even if measured by inaccurateradioimmunoassay, or we must accept high-cost LC/MS, and development of a more rapid and accurate substitute has been long hoped. We havedeveloped a novel, fully-automated, high-quantitative noncompetitive chemiluminescence immunoassay (NC-CLEIA) for detecting aldosterone inserum and plasma, and its performance is evaluated as compared to LC/MS measurement. Methods Recently a unique anti-metatype antibody,which recognizes the immunocomplex of aldosterone and its monoclonal antibody, was established. Using this antibody for sensing permittedthe construction of non-competitive assay for the detection of aldosterone. The reaction protocol of novel aldosterone assay is the following. Inthe 1st reaction, aldosterone in patient’s sample is captured on anti-body coated magnetic particles. Alkaline phosphatase-conjugated antimetatypeantibody is added and incubated as 2nd reaction following a wash. Then substrate solution is added after washing immunocomplex.The resulting reaction signals are proportional to the amount of aldosterone in the sample allowing quantitative determination of in serum orplasma sample. The overall reaction is completed within 30 min. Results Limit of blank (LoB), limit of detection (LoD) and limit of quantitation(LoQ) of our NC-CLEIA aldosterone assay were 0.09 ng/dL, 0.21 ng/dL and 0.57 ng/dL, respectively. NC-CLEIA aldosterone measurements werelinearly well correlated with LC/MS aldosterone measurements (N = 130, y = 1.027x - 0.23 ng/dL, Spearman’s ρ = 0.996, P< 0.0001). Bland-Altmanplot analysis between NC-CLEIA and LC-MS/MS of aldosterone revealed a bias of 0.40 ng/dL with the limits of agreement of -4.60 and 5.41 ng/dLwith 95% confidence interval. Conclusion Our novel NC-CLEIA aldosterone assay was well-correlated and had only a very low bias with LC-MS/MSmethod and also was able to accurately quantify low level samples even in essential hypertension patients. This aldosterone assay can be a most equivalent to LC-MS/MS measurement with a low cost of 12 $ and a short measuring time of 30 minutes.


2013 ◽  
Vol 634-638 ◽  
pp. 1586-1590
Author(s):  
Su Fang Wang ◽  
Shou Jie Zhang ◽  
Chun Hong Dong ◽  
Guo Qing Wang ◽  
Jun Feng Guo ◽  
...  

A method for simultaneous determination of residuals of four herbicides and pesticides, simazine, carboxin, diflubenzuron and rotenone, in Chinese green tea was developed. In the proposed method, the tea powder was placed in a centrifuge tube with a plug, extracted in saturated aqueous sodium chloride solution and acetonitrile, agitated using vortex oscillator, and then centrifuged 5 min at 4000 rpm. The supernatant solution was purified by primary secondary amine (PSA) sorbent, C18 power, and graphitized carbon black powder, respectively. Then the purified extracts were dissolved with acetonitrile:0.1% formic acid aqueous solution (40:60, V/V) and agitated, filtered using a syringe with 0.22 μm nylon filter prior to UPLC-MS/MS analysis. The UPLC analysis was performed on an ACQUITY UPLC® HSS T3 column (2.1 mm×100 mm, 1.8 µm), using acetonitrile-0.1% formic acid as mobile phase with the flow rate as 0.3 mL•min-1. Injection volume was 10 µL. Positive ionization mode was applied, and the ions were monitored in the multiple reaction monitoring (MRM) mode with curtain gas 0.069 MPa, collision gas 0.052 MPa, ESI ion spray voltage 5000 V, temperature 550 °C, nebulizer gas 0.24 MPa, and turbo gas 0.28 MPa. The limit of detection (LOD) and limit of quantitation (LOQ) of the proposed method are 1 μg•kg-1and 5 μg•kg-1, respectively. The average recoveries of the four pesticides at 10, 20, and 50 µg•kg-1spiking levels range from 77.4% to 95.3%. TheSupersSuperscript textcript textrelative standard deviation (RSD) (n=6) range form 11.83% to 4.52%.


2019 ◽  
Vol 31 (1) ◽  
pp. 1-9
Author(s):  
Deepak Kumar Sahu ◽  
Joyce Rai ◽  
Chhaya Bhatt ◽  
Manish K. Rai ◽  
Jyoti Goswami ◽  
...  

In modern age pesticide is used widely in agriculture. Lambda-cyhalothrin (LCT) is one of the most used pesticides which are used as a insecticide to kill pest, tricks, flies etc in agricultural field and it is also used for crop production. We have developed new method to detect LCT insecticide in agriculture field and reduce its uses. In this method we found the maximum absorbance at 460 nm for yellow colour dye. We also calculated limit of detection and limit of quantification 0.001 mg kg-1 and 0.056 mg kg-1 respectively. Molar absorptivity and Sandell’s sensitivity was also calculated and obtained 1.782 ×107 mol-1 cm-1 and 9.996 ×10-6 µg cm-2 respectively. The obtained yellow colour dye obeyed Beer’s law limit range of 0.5 µg ml -1 to 16 µg ml-1 in 25 ml. This method is less time consuming, selective, simple, sensitive and low cost. Present method is successfully applied in various soil, water and vegetable samples.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Author(s):  
Abolfazl Darroudi ◽  
Saeid Nazari ◽  
Seyed Ali Marashi ◽  
Mahdi Karimi-Nazarabad

Abstract An accurate, rapid, simple, and novel technique was developed to determine simvastatin (SMV). In this research, a screen-printed electrode (SPE) was deposited with graphene oxide (GO) and sodium dodecyl sulfate (SDS), respectively. For the first time, the handmade modified SPE measured the SMV by differential pulse voltammetry (DPV) with high sensitivity and selectivity. The results of cyclic voltammetry indicated the oxidation irreversible process of SMV. Various parameters (pH, concentration, scan rate, support electrolyte) were performed to optimize the conditions for the determination of SMV. Under the optimum experiment condition of 0.1 M KNO3 as support electrolyte and pH 7.0, the linear range was achieved for SMV concentration from 1.8 to 36.6 µM with a limit of detection (LOD), and a limit of quantitation (LOQ) of 0.06 and 1.8 µM, respectively. The proposed method was successfully utilized to determine SMV in tablets and urine samples with a satisfactory recovery in the range of 96.2 to 103.3%.


2021 ◽  
Author(s):  
Sepideh Shafaei ◽  
Elyas Hosseinzadeh ◽  
Gulsah Saydan Kanberoglu ◽  
Balal Khalilzadeh ◽  
Rahim Mohammad-Rezaei

Abstract In this study, cerium oxide and multi-walled carbon nanotubes nanocomposite was incorporated into the carbon ceramic electrode (CeO2-MWCNTs/CCE) as a renewable electrode for the electrocatalytic purposes. To demonstrate capability of the fabricated electrode, determination of Tamoxifen as an important anticancer drug with differential pulse voltammetry technique was evaluated. Linear range, limit of detection and sensitivity of the developed sensor were found to be 0.2-40 nM, 0.132 nM and 1.478 µA nM-1 cm-2, respectively. Ease of production, low cost and high electron transfer rate of CeO2-MWCNTs/CCE promise it as a novel electro-analytical tool for determination of important species in real samples.


Sign in / Sign up

Export Citation Format

Share Document