scholarly journals A Way of Bionic Control Based on EI, EMG, and FMG Signals

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Andrey Briko ◽  
Vladislava Kapravchuk ◽  
Alexander Kobelev ◽  
Ahmad Hammoud ◽  
Steffen Leonhardt ◽  
...  

Creating highly functional prosthetic, orthotic, and rehabilitation devices is a socially relevant scientific and engineering task. Currently, certain constraints hamper the development of such devices. The primary constraint is the lack of an intuitive and reliable control interface working between the organism and the actuator. The critical point in developing these devices and systems is determining the type and parameters of movements based on control signals recorded on an extremity. In the study, we investigate the simultaneous acquisition of electric impedance (EI), electromyography (EMG), and force myography (FMG) signals during basic wrist movements: grasping, flexion/extension, and rotation. For investigation, a laboratory instrumentation and software test setup were made for registering signals and collecting data. The analysis of the acquired signals revealed that the EI signals in conjunction with the analysis of EMG and FMG signals could potentially be highly informative in anthropomorphic control systems. The study results confirm that the comprehensive real-time analysis of EI, EMG, and FMG signals potentially allows implementing the method of anthropomorphic and proportional control with an acceptable delay.

Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2020 ◽  
Vol 67 (4) ◽  
pp. 1197-1205 ◽  
Author(s):  
Yuki Totani ◽  
Susumu Kotani ◽  
Kei Odai ◽  
Etsuro Ito ◽  
Manabu Sakakibara

2021 ◽  
Vol 2021 (4) ◽  
pp. 7-16
Author(s):  
Sivaraman Eswaran ◽  
Aruna Srinivasan ◽  
Prasad Honnavalli

2021 ◽  
Vol 57 (28) ◽  
pp. 3430-3444
Author(s):  
Vinod Kumar

This article describes our journey and success stories in the development of chemical warfare detection, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents in realistic environments.


2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document