scholarly journals Artificial Intelligence Techniques in Smart Grid: A Survey

Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 548-568
Author(s):  
Olufemi A. Omitaomu ◽  
Haoran Niu

The smart grid is enabling the collection of massive amounts of high-dimensional and multi-type data about the electric power grid operations, by integrating advanced metering infrastructure, control technologies, and communication technologies. However, the traditional modeling, optimization, and control technologies have many limitations in processing the data; thus, the applications of artificial intelligence (AI) techniques in the smart grid are becoming more apparent. This survey presents a structured review of the existing research into some common AI techniques applied to load forecasting, power grid stability assessment, faults detection, and security problems in the smart grid and power systems. It also provides further research challenges for applying AI technologies to realize truly smart grid systems. Finally, this survey presents opportunities of applying AI to smart grid problems. The paper concludes that the applications of AI techniques can enhance and improve the reliability and resilience of smart grid systems.

Author(s):  
Nachiket Kulkarni ◽  
S. V. N. L. Lalitha ◽  
Sanjay A. Deokar

The use of grid power systems based on the combinations of various electrical networks, information technology, and communication layers called as Smart Grid systems. The technique of smart grid suppressed the problems faced by conventional grid systems such as inefficient energy management, improper control actions, grid faults, human errors, etc. The recent research on smart grid provides the approach for the real-time control and monitoring of grid power systems based on bidirectional communications. However, the smart grid is yet to improve regarding efficiency, energy management, reliability, and cost-effectiveness by considering its real-time implementation. In this paper, we present the real-time design of efficient monitoring and control of grid power system using the remote cloud server. We utilized the remote cloud server to fetch, monitor and control the real-time power system data to improve the universal control and response time. The proper hardware panel designed and fabricated to establish the connection with the grid as well as remote cloud users. The authenticated cloud users are provisioned to access and control the grid power system from anywhere securely. For the user authentication, we proposed the novel approach to secure the complete smart grid system. Finally, we demonstrated the effectiveness of real-time monitoring and control of the grid power method with the use of structure of practical framework.


Author(s):  
Kehinde Oluwafemi Olusuyi ◽  
Paul Kehinde Olulope ◽  
Abiodun Ernest Amoran ◽  
Eno Edet Peter

The present-day electric power system is an evolving cyber-physical system. Researchers and industry players in the energy world continue to deploy new technologies towards making the electric power system a smarter grid. This involves the integration of information, communication, and control technologies into the existing power grid in order to improve its stability, security, and operational efficiency. Reliance of the modern power system's applications such as state estimation, sequential control and data acquisition (SCADA) systems, phasor measurement units (PMUs), etc. on open communication technologies including the internet has exposed the smart grid to various vulnerabilities, threats, and cyber-physical attacks. This chapter seeks to exploit the robust synergy which exists between artificial intelligence (AI) and fifth-generation (5G) technology to mitigate these challenges. A comprehensive review of techniques which have hitherto proven efficient and/or effective in mitigating identified challenges was carried out with a view to availing researchers of future directions.


Author(s):  
Stephen R. Barley

The four chapters of this book summarize the results of thirty-five years dedicated to studying how technologies change work and organizations. The first chapter places current developments in artificial intelligence into the historical context of previous technological revolutions by drawing on William Faunce’s argument that the history of technology is one of progressive automation of the four components of any production system: energy, transformation, and transfer and control technologies. The second chapter lays out a role-based theory of how technologies occasion changes in organizations. The third chapter tackles the issue of how to conceptualize a more thorough approach to assessing how intelligent technologies, such as artificial intelligence, can shape work and employment. The fourth chapter discusses what has been learned over the years about the fears that arise when one sets out to study technical work and technical workers and methods for controlling those fears.


Author(s):  
Saad Afzal

Smart Grid is a communication and automatic control capabilities in electric power grid system for improving efficiency, reliability, management, capabilities and security of electric power grid. Routing is important in Smart Grid to send data from one point to another point. Routing in Smart Grid is necessary to search /identify destination point/node for communication and to computer the best available route in the network topology among which the data to be sent during communication. Smart Grid can be a combination of fixed nodes (home appliances, smart meter, control centre, etc.) but the nature of communication between fixed nodes is dynamic due to the switch on/off or the fluctuation in electricity flow. Therefore the fixed nodes can also be disappeared from the network topology in Smart Grid. Existing routing protocols for Smart Grid are based on flooding mechanism. We would like to examine the feasibility of flooding free routing in Smart Grid. Then we will propose a flooding-free routing for Smart.


Author(s):  
Ana E. Goulart ◽  
Abhijeet Sahu

Wireless access technologies are being embedded in utility meters, health devices, public safety systems, among others. These devices have low processing power and communicate at low data rates. New communication standards are being developed to support these machine-type communications (MTC), such as Cellular Internet of Things (CIoT), which is being developed by the third generation partnership project (3GPP). CIoT introduces cooperative ultra-narrow band (C-UNB) communications. It supports ad-hoc uplink transmissions, delay-tolerant downlink transmissions, and a simple authentication scheme. The C-UNB approach is proposed for Mobile Autonomous Reporting (MAR) applications, but it is not clear if it can be used for smart grid systems, such as sensors and smart meters in the Advanced Metering Infrastructure (AMI). In this paper, the authors review the C-UNB approach, study its performance in terms of collision rate and throughput, and discuss its potential for smart grid reporting applications.


Author(s):  
Anurag K. Srivastava ◽  
Ramon Zamora ◽  
Noel N. Schulz ◽  
Krishnanjan G. Ravikumar ◽  
Vinoth M. Mohan

Sign in / Sign up

Export Citation Format

Share Document