scholarly journals Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity

Sports ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 169 ◽  
Author(s):  
Kevin M. Carroll ◽  
Caleb D. Bazyler ◽  
Jake R. Bernards ◽  
Christopher B. Taber ◽  
Charles A. Stuart ◽  
...  

The purpose of the study was to compare the physiological responses of skeletal muscle to a resistance training (RT) program using repetition maximum (RM) or relative intensity (RISR). Fifteen well-trained males underwent RT 3 d·wk−1 for 10 weeks in either an RM group (n = 8) or RISR group (n = 7). The RM group achieved a relative maximum each day, while the RISR group trained based on percentages. The RM group exercised until muscular failure on each exercise, while the RISR group did not reach muscular failure throughout the intervention. Percutaneous needle biopsies of the vastus lateralis were obtained pre-post the training intervention, along with ultrasonography measures. Dependent variables were: Fiber type-specific cross-sectional area (CSA); anatomical CSA (ACSA); muscle thickness (MT); mammalian target of rapamycin (mTOR); adenosine monophosphate protein kinase (AMPK); and myosin heavy chains (MHC) specific for type I (MHC1), type IIA (MHC2A), and type IIX (MHC2X). Mixed-design analysis of variance and effect size using Hedge’s g were used to assess within- and between-group alterations. RISR statistically increased type I CSA (p = 0.018, g = 0.56), type II CSA (p = 0.012, g = 0.81), ACSA (p = 0.002, g = 0.53), and MT (p < 0.001, g = 1.47). RISR also yielded a significant mTOR reduction (p = 0.031, g = −1.40). Conversely, RM statistically increased only MT (p = 0.003, g = 0.80). Between-group effect sizes supported RISR for type I CSA (g = 0.48), type II CSA (g = 0.50), ACSA (g = 1.03), MT (g = 0.72), MHC2X (g = 0.31), MHC2A (g = 0.87), and MHC1 (g = 0.59); with all other effects being of trivial magnitude (g < 0.20). Our results demonstrated greater adaptations in fiber size, whole-muscle size, and several key contractile proteins when using RISR compared to RM loading paradigms.

1989 ◽  
Vol 66 (5) ◽  
pp. 2454-2461 ◽  
Author(s):  
H. J. Green ◽  
J. R. Sutton ◽  
A. Cymerman ◽  
P. M. Young ◽  
C. S. Houston

Adaptations in skeletal muscle in response to progressive hypobaria were investigated in eight male subjects [maximal O2 uptake = 51.2 +/- 3.0 (SE) ml.kg-1.min-1] over 40 days of progressive decompression to the stimulated altitude of the summit of Mt. Everest. Samples of the vastus lateralis muscle extracted before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) indicated that maximal activities of enzymes representative of the citric acid cycle, beta-oxidation, glycogenolysis, glycolysis, glucose phosphorylation, and high-energy phosphate transfer were unchanged (P greater than 0.05) at 380 and 282 Torr over initial SL-1 values. After exposure to 282 Torr, however, representing an additional period of approximately 7 days, reductions (P less than 0.05) were noted in succinic dehydrogenase (21%), citrate synthetase (37%), and hexokinase (53%) between SL-2 and 380 Torr. No changes were found in the other enzymes. Capillarization as measured by the number of capillaries per cross-sectional area (CC/FA) was increased (P less than 0.05) in both type I (0.94 +/- 0.8 vs. 1.16 +/- 0.05) and type II (0.84 +/- 0.07 vs. 1.05 +/- 0.08) fibers between SL-1 and SL-2. This increase was mediated by a reduction in fiber area. No changes were found in fiber-type distribution (type I vs. type II). These findings do not support the hypothesis, at least in humans, that, at the level of the muscle cell, extreme hypobaric hypoxia elicits adaptations directed toward maximizing oxidative function.


2000 ◽  
Vol 88 (4) ◽  
pp. 1321-1326 ◽  
Author(s):  
Walter R. Frontera ◽  
Virginia A. Hughes ◽  
Roger A. Fielding ◽  
Maria A. Fiatarone ◽  
William J. Evans ◽  
...  

The present study examines age-related changes in skeletal muscle size and function after 12 yr. Twelve healthy sedentary men were studied in 1985–86 (T1) and nine (initial mean age 65.4 ± 4.2 yr) were reevaluated in 1997–98 (T2). Isokinetic muscle strength of the knee and elbow extensors and flexors showed losses ( P < 0.05) ranging from 20 to 30% at slow and fast angular velocities. Computerized tomography ( n = 7) showed reductions ( P < 0.05) in the cross-sectional area (CSA) of the thigh (12.5%), all thigh muscles (14.7%), quadriceps femoris muscle (16.1%), and flexor muscles (14.9%). Analysis of covariance showed that strength at T1 and changes in CSA were independent predictors of strength at T2. Muscle biopsies taken from vastus lateralis muscles ( n = 6) showed a reduction in percentage of type I fibers (T1 = 60% vs. T2 = 42%) with no change in mean area in either fiber type. The capillary-to-fiber ratio was significantly lower at T2 (1.39 vs. 1.08; P = 0.043). Our observations suggest that a quantitative loss in muscle CSA is a major contributor to the decrease in muscle strength seen with advancing age and, together with muscle strength at T1, accounts for 90% of the variability in strength at T2.


2003 ◽  
Vol 28 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Chris M. Gregory ◽  
Krista Vandenborne ◽  
Michael J. Castro ◽  
G. Alton Dudley

Results of studies of rodent skeletal muscle plasticity are often extrapolated to humans. However, responses to "disuse" may be species specific, in part because of different inherent properties of anatomically similar muscles. Thus, this study quantified human and rat m. vastus lateralis (VL) fiber adaptations to 11 weeks of spinal cord injury (SCI). The m. VL was taken from 8 young (54 d) male Charles River rats after T-9 laminectomy (n = 4) or sham surgery (n = 4). In addition, the m. VL was biopsied in 7 able-bodied and in 7 SCI humans (31.3 ± 4.7 years, mean ± SE). Samples were sectioned and fibers were analyzed for type (I, IIa, IIb/x), cross-sectional area (CSA), succinate dehydrogenase (SDH), α-glycerol-phosphate dehydrogenase (GPDH), and actomyosin adenosine triphosphatase (qATPase) activities. Rat fibers had 1.5- to 2-fold greater SDH and GPDH activities while their fibers were 60% the size of those in humans. The most striking differences, however, were the absence of slow fibers in the rat and its four-fold greater proportion of IIb/x fibers (80% vs. 16% of the CSA) compared to humans. SCI decreased SDH activity more in rats whereas atrophy and IIa to IIb/x fiber shift occurred to a greater extent in humans. It is suggested that the rat is a reasonable model for studying the predominant response to SCI, atrophy. However, its high proportion of IIb/x fibers limits evaluation of the mechanical consequences of shifting to "faster" contractile machinery after SCI. Key words: enzyme, fiber type, disuse, biopsy


2004 ◽  
Vol 5 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Alissa Guildner Gehrke ◽  
Margaret Sheie Krull ◽  
Robin Shotwell McDonald ◽  
Tracy Sparby ◽  
Jessica Thoele ◽  
...  

Age-related changes in skeletal muscle, in combination with bed rest, may result in a poorer rehabilitation potential for an elderly patient. The purpose of this study was to determine the effects of non-weight bearing (hind limb unweighting [HU]) on the soleus and extensor digitorum longus (EDL) in older rats. Two non-weight bearing conditions were used: an uninterrupted bout of HU and an interrupted bout of HU. Twenty-one rats were randomly placed into 1 of 3 groups: control, interrupted HU (2 phases of 7 days of HU, separated by a 4-day weight-bearing phase) and an uninterrupted HU (18 uninterrupted days of HU). Following non-weight bearing, the soleus and EDL muscles were removed. Fiber type identification was performed by myofibrillar ATPase and cross-sectional area was determined. The findings suggest that any period of non-weight bearing leads to a decrease in muscle wet weight (19%-45%). Both type I and type II fibers of the soleus showed atrophy (decrease in cross-sectional area, 35%-44%) with an uninterrupted bout of non-weight bearing. Only the type II fibers of the soleus showed recovery with an interrupted bout of weight bearing. In the EDL, type II fibers were more affected by an uninterrupted bout of non-weight bearing (15% decrease in fiber size) compared to the type I fibers. EDL type II fibers showed more atrophy with interrupted bouts of non-weight bearing than with a single bout (a 40% compared to a 15% decrease). This study shows that initial weight bearing after an episode of non-weight bearing may be damaging to type II fibers of the EDL.


2016 ◽  
Vol 121 (5) ◽  
pp. 1074-1086 ◽  
Author(s):  
Ben D. Perry ◽  
Victoria L. Wyckelsma ◽  
Robyn M. Murphy ◽  
Collene H. Steward ◽  
Mitchell Anderson ◽  
...  

Physical training increases skeletal muscle Na+,K+-ATPase content (NKA) and improves exercise performance, but the effects of inactivity per se on NKA content and isoform abundance in human muscle are unknown. We investigated the effects of 23-day unilateral lower limb suspension (ULLS) and subsequent 4-wk resistance training (RT) on muscle function and NKA in 6 healthy adults, measuring quadriceps muscle peak torque; fatigue and venous [K+] during intense one-legged cycling exercise; and skeletal muscle NKA content ([3H]ouabain binding) and NKA isoform abundances (immunoblotting) in muscle homogenates (α1-3, β1–2) and in single fibers (α1–3, β1). In the unloaded leg after ULLS, quadriceps peak torque and cycling time to fatigue declined by 22 and 23%, respectively, which were restored with RT. Whole muscle NKA content and homogenate NKA α1–3 and β1–2 isoform abundances were unchanged with ULLS or RT. However, in single muscle fibers, NKA α3 in type I (−66%, P = 0.006) and β1 in type II fibers (−40%, P = 0.016) decreased after ULLS, with other NKA isoforms unchanged. After RT, NKA α1 (79%, P = 0.004) and β1 (35%, P = 0.01) increased in type II fibers, while α2 (76%, P = 0.028) and α3 (142%, P = 0.004) increased in type I fibers compared with post-ULLS. Despite considerably impaired muscle function and earlier fatigue onset, muscle NKA content and homogenate α1 and α2 abundances were unchanged, thus being resilient to inactivity induced by ULLS. Nonetheless, fiber type-specific downregulation with inactivity and upregulation with RT of several NKA isoforms indicate complex regulation of muscle NKA expression in humans.


2010 ◽  
Vol 109 (3) ◽  
pp. 635-642 ◽  
Author(s):  
Samuel M. Cadena ◽  
Kathleen N. Tomkinson ◽  
Travis E. Monnell ◽  
Matthew S. Spaits ◽  
Ravindra Kumar ◽  
...  

This is the first report that inhibition of negative regulators of skeletal muscle by a soluble form of activin type IIB receptor (ACE-031) increases muscle mass independent of fiber-type expression. This finding is distinct from the effects of selective pharmacological inhibition of myostatin (GDF-8), which predominantly targets type II fibers. In our study 8-wk-old C57BL/6 mice were treated with ACE-031 or vehicle control for 28 days. By the end of treatment, mean body weight of the ACE-031 group was 16% greater than that of the control group, and wet weights of soleus, plantaris, gastrocnemius, and extensor digitorum longus muscles increased by 33, 44, 46 and 26%, respectively ( P < 0.05). Soleus fiber-type distribution was unchanged with ACE-031 administration, and mean fiber cross-sectional area increased by 22 and 28% ( P < 0.05) in type I and II fibers, respectively. In the plantaris, a predominantly type II fiber muscle, mean fiber cross-sectional area increased by 57% with ACE-031 treatment. Analysis of myosin heavy chain (MHC) isoform transcripts by real-time PCR indicated no change in transcript levels in the soleus, but a decline in MHC I and IIa in the plantaris. In contrast, electrophoretic separation of total soleus and plantaris protein indicated that there was no change in the proportion of MHC isoforms in either muscle. Thus these data provide optimism that ACE-031 may be a viable therapeutic in the treatment of musculoskeletal diseases. Future studies should be undertaken to confirm that the observed effects are not age dependent or due to the relatively short study duration.


1999 ◽  
Vol 86 (6) ◽  
pp. 1858-1865 ◽  
Author(s):  
Sandra K. Hunter ◽  
Martin W. Thompson ◽  
Patricia A. Ruell ◽  
Alison R. Harmer ◽  
Jeanette M. Thom ◽  
...  

This study investigated the adaptations of skeletal muscle sarcoplasmic reticulum (SR) Ca2+ uptake, relaxation, and fiber types in young (YW) and elderly women (EW) to high-resistance training. Seventeen YW (18–32 yr) and 11 EW (64–79 yr) were assessed for 1) electrically evoked relaxation time and rate of the quadriceps femoris; and 2) maximal rates of SR Ca2+ uptake and Ca2+-ATPase activity and relative fiber-type areas, analyzed from muscle biopsies of the vastus lateralis. EW had significantly slower relaxation rates and times, decreased SR Ca2+ uptake and Ca2+-ATPase activity, and a larger relative type I fiber area than did YW. A subgroup of 9 young (YWT) and 10 elderly women (EWT) performed 12 wk of high-resistance training (8 repetition maximum) of the quadriceps and underwent identical testing procedures pre- and posttraining. EWT significantly increased their SR Ca2+ uptake and Ca2+-ATPase activity in response to training but showed no alterations in speed of relaxation or relative fiber-type areas. In YWT none of the variables was altered after resistance training. These findings suggest that 1) a reduced SR Ca2+ uptake in skeletal muscle of elderly women was partially reversed with resistance training and 2) SR Ca2+ uptake in the vastus lateralis was not the rate-limiting mechanism for the slowing of relaxation measured from electrically evoked quadriceps muscle of elderly women.


2002 ◽  
Vol 283 (1) ◽  
pp. E154-E164 ◽  
Author(s):  
Indrani Sinha-Hikim ◽  
Jorge Artaza ◽  
Linda Woodhouse ◽  
Nestor Gonzalez-Cadavid ◽  
Atam B. Singh ◽  
...  

Administration of replacement doses of testosterone to healthy hypogonadal men and supraphysiological doses to eugonadal men increases muscle size. To determine whether testosterone-induced increase in muscle size is due to muscle fiber hypertrophy, 61 healthy men, 18–35 yr of age, received monthly injections of a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion and weekly injections of 25, 50, 125, 300, or 600 mg testosterone enanthate (TE) for 20 wk. Thigh muscle volume was measured by magnetic resonance imaging (MRI) scan, and muscle biopsies were obtained from vastus lateralis muscle in 39 men before and after 20 wk of combined treatment with GnRH agonist and testosterone. Administration of GnRH agonist plus TE resulted in mean nadir testosterone concentrations of 234, 289, 695, 1,344, and 2,435 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Graded doses of testosterone administration were associated with testosterone dose and concentration-dependent increase in muscle volume measured by MRI (changes in vastus lateralis volume, −4, +7, +15, +32, and +48 ml at 25-, 50-, 125-, 300-, and 600-mg doses, respectively). Changes in cross-sectional areas of both type I and II fibers were dependent on testosterone dose and significantly correlated with total ( r = 0.35, and 0.44, P < 0.0001 for type I and II fibers, respectively) and free ( r = 0.34 and 0.35, P < 0.005) testosterone concentrations during treatment. The men receiving 300 and 600 mg of TE weekly experienced significant increases from baseline in areas of type I (baseline vs. 20 wk, 3,176 ± 186 vs. 4,201 ± 252 μm2, P < 0.05 at 300-mg dose, and 3,347 ± 253 vs. 4,984 ± 374 μm2, P = 0.006 at 600-mg dose) muscle fibers; the men in the 600-mg group also had significant increments in cross-sectional area of type II (4,060 ± 401 vs. 5,526 ± 544 μm2, P = 0.03) fibers. The relative proportions of type I and type II fibers did not change significantly after treatment in any group. The myonuclear number per fiber increased significantly in men receiving the 300- and 600-mg doses of TE and was significantly correlated with testosterone concentration and muscle fiber cross-sectional area. In conclusion, the increases in muscle volume in healthy eugonadal men treated with graded doses of testosterone are associated with concentration-dependent increases in cross-sectional areas of both type I and type II muscle fibers and myonuclear number. We conclude that the testosterone induced increase in muscle volume is due to muscle fiber hypertrophy.


2014 ◽  
Vol 117 (8) ◽  
pp. 898-909 ◽  
Author(s):  
Jean Farup ◽  
Stine Klejs Rahbek ◽  
Simon Riis ◽  
Mikkel Holm Vendelbo ◽  
Frank de Paoli ◽  
...  

Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers ( P < 0.01) and exhibited a group difference from Ecc ( P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups ( P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc ( P < 0.01) and Placebo-Ecc ( P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention ( P < 0.001), type II fiber CSA increased exclusively with Whey-Conc ( P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training ( P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation.


1991 ◽  
Vol 71 (2) ◽  
pp. 558-564 ◽  
Author(s):  
P. F. Gardiner ◽  
B. J. Jasmin ◽  
P. Corriveau

Our aim was to quantify the overload-induced hypertrophy and conversion of fiber types (type II to I) occurring in the medial head of the gastrocnemius muscle (MG). Overload of MG was induced by a bilateral tenotomy/retraction of synergists, followed by 12–18 wk of regular treadmill locomotion (2 h of walking/running per day on 3 of 4 days). We counted all type I fibers and determined type I and II mean fiber areas in eight equidistant sections taken along the length of control and overloaded MG. Increase in muscle weights (31%), as well as in total muscle cross-sectional areas (37%) and fiber areas (type I, 57%; type II, 34%), attested to a significant hypertrophic response in overloaded MG. An increase in type I fiber composition of MG from 7.0 to 11.5% occurred as a result of overload, with the greatest and only statistically significant changes (approximately 70–100%) being found in sections taken from the most rostral 45% of the muscle length. Results of analysis of sections taken from the largest muscle girth showed that it significantly underestimated the extent of fiber conversion that occurred throughout the muscle as a whole. These data obtained on the MG, which possesses a compartmentalization of fiber types, support the notion that all fiber types respond to this model with a similar degree of hypertrophy. Also, they emphasize the complex nature of the adaptive changes that occur in these types of muscles as a result of overload.


Sign in / Sign up

Export Citation Format

Share Document