scholarly journals Utility of Verification Testing to Confirm Attainment of Maximal Oxygen Uptake in Unhealthy Participants: A Perspective Review

Sports ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 108
Author(s):  
Todd A. Astorino ◽  
Danielle Emma

Maximal oxygen uptake (VO2max) is strongly associated with endurance performance as well as health risk. Despite the fact that VO2max has been measured in exercise physiology for over a century, robust procedures to ensure that VO2max is attained at the end of graded exercise testing (GXT) do not exist. This shortcoming led to development of an additional bout referred to as a verification test (VER) completed after incremental exercise or on the following day. Workloads used during VER can be either submaximal or supramaximal depending on the population tested. Identifying a true VO2max value in unhealthy individuals at risk for or having chronic disease seems to be more paramount than in healthy and active persons, who face much lower risk of premature morbidity and mortality. This review summarized existing findings from 19 studies including 783 individuals regarding efficacy of VER in unhealthy individuals to determine its efficacy and feasibility in eliciting a ‘true’ VO2max in this sample. Results demonstrated that VER is a safe and suitable approach to confirm attainment of VO2max in unhealthy adults and children, as in most studies VER-derived VO2max is similar of that obtained in GXT. However, many individuals reveal higher VO2max in response to VER and protocols used across studies vary, which merits additional work identifying if an optimal VER protocol exists to elicit ‘true’ VO2max in this particular population.

2006 ◽  
Vol 97 (5) ◽  
pp. 535-541 ◽  
Author(s):  
Roger G. Eston ◽  
James A. Faulkner ◽  
Elizabeth A. Mason ◽  
Gaynor Parfitt

2013 ◽  
Vol 38 (12) ◽  
pp. 1211-1216 ◽  
Author(s):  
Alexis R. Mauger ◽  
Alan J. Metcalfe ◽  
Lee Taylor ◽  
Paul C. Castle

The novel self-paced, cycle-based maximal oxygen uptake (V̇O2max) test (SPV) has been shown to produce higher V̇O2max values than standard graded exercise test (GXT) protocols. This study sought to ascertain whether these observations would also be apparent in a self-paced, treadmill-based test design. Fourteen trained male runners performed a standard GXT on a motorised treadmill and a self-paced V̇O2max test on a nonmotorised treadmill in a counter-balanced design. The GXT included a plateau verification and was designed to last between 8 and 12 min. The self-paced test included 5 × 2 min stages and allowed participants to set their own running speed based on fixed increments in rating of perceived exertion. Significantly higher V̇O2max values (t[13] = 3.71, p = 0.003) were achieved in the self-paced test (64.4 ± 7.3 mL·kg−1·min−1) compared with the GXT (61.3 ± 7.3 mL·kg−1·min−1), and 13 of the 14 participants achieved the same or higher V̇O2max values in the self-paced test. Higher (p = 0.01) maximum heart rates were observed in the GXT (191 ± 10 beats·min−1 vs. 187 ± 7 beats·min−1), but no differences were observed in any other recorded variables. The self-paced V̇O2max test may provide a more valid means of measuring V̇O2max than the GXT and suggests that a V̇O2 plateau during a GXT does not always signify achievement of a definitive V̇O2max. These results provide further support that self-paced V̇O2max testing produces higher values for maximal oxygen uptake.


2021 ◽  
Vol 9 (18) ◽  
Author(s):  
Ian R. Villanueva ◽  
John C. Campbell ◽  
Serena M. Medina ◽  
Theresa M. Jorgensen ◽  
Shannon L. Wilson ◽  
...  

2017 ◽  
Vol 16 (2) ◽  
pp. 78-87
Author(s):  
J. M. Jäger ◽  
J. Kurz ◽  
H. Müller

AbstractMaximal oxygen uptake (VO2max) is one of the most distinguished parameters in endurance sports and plays an important role, for instance, in predicting endurance performance. Different models have been used to estimate VO2max or performance based on VO2max. These models can use linear or nonlinear approaches for modeling endurance performance. The aim of this study was to estimate VO2max in healthy adults based on the Queens College Step Test (QCST) as well as the Shuttle Run Test (SRT) and to use these values for linear and nonlinear models in order to predict the performance in a maximal 1000 m run (i.e. the speed in an incremental 4×1000 m Field Test (FT)). 53 female subjects participated in these three tests (QCST, SRT, FT). Maximal oxygen uptake values from QCST and SRT were used as (a) predictor variables in a multiple linear regression (MLR) model and as (b) input variables in a multilayer perceptron (MLP) after scaling in preprocessing. Model output was speed [km·h−1] in a maximal 1000 m run. Maximal oxygen uptake values estimated from QCST (40.8 ± 3.5 ml·kg−1·min−1) and SRT (46.7 ± 4.5 ml·kg−1·min−1) were significantly correlated (r = 0.38, p < 0.01) and maximal mean speed in the FT was 12.8 ± 1.6 km·h−1. Root mean squared error (RMSE) of the cross validated MLR model was 0.89 km·h−1while it was 0.95 km·h−1for MLP. Results showed that the accuracy of the applied MLP was comparable to the MLR, but did not outperform the linear approach.


Author(s):  
José Alvero-Cruz ◽  
Elvis Carnero ◽  
Manuel García ◽  
Fernando Alacid ◽  
Lorena Correas-Gómez ◽  
...  

Physiological variables such as maximal oxygen uptake (VO2max), velocity at maximal oxygen uptake (vVO2max), running economy (RE) and changes in lactate levels are considered the main factors determining performance in long-distance races. The aim of this review was to present the mathematical models available in the literature to estimate performance in the 5000 m, 10,000 m, half-marathon and marathon events. Eighty-eight articles were identified, selections were made based on the inclusion criteria and the full text of the articles were obtained. The articles were reviewed and categorized according to demographic, anthropometric, exercise physiology and field test variables were also included by athletic specialty. A total of 58 studies were included, from 1983 to the present, distributed in the following categories: 12 in the 5000 m, 13 in the 10,000 m, 12 in the half-marathon and 21 in the marathon. A total of 136 independent variables associated with performance in long-distance races were considered, 43.4% of which pertained to variables derived from the evaluation of aerobic metabolism, 26.5% to variables associated with training load and 20.6% to anthropometric variables, body composition and somatotype components. The most closely associated variables in the prediction models for the half and full marathon specialties were the variables obtained from the laboratory tests (VO2max, vVO2max), training variables (training pace, training load) and anthropometric variables (fat mass, skinfolds). A large gap exists in predicting time in long-distance races, based on field tests. Physiological effort assessments are almost exclusive to shorter specialties (5000 m and 10,000 m). The predictor variables of the half-marathon are mainly anthropometric, but with moderate coefficients of determination. The variables of note in the marathon category are fundamentally those associated with training and those derived from physiological evaluation and anthropometric parameters.


2007 ◽  
Vol 28 (5) ◽  
pp. 381-385 ◽  
Author(s):  
M. Ashenden ◽  
Y. Schumacher ◽  
K. Sharpe ◽  
E. Varlet-Marie ◽  
M. Audran

2005 ◽  
Vol 94 (3) ◽  
pp. 221-227 ◽  
Author(s):  
Roger G. Eston ◽  
Kevin L. Lamb ◽  
Gaynor Parfitt ◽  
Nicholas King

2006 ◽  
Vol 16 (4) ◽  
pp. 393-404 ◽  
Author(s):  
Samuel Erith ◽  
Clyde Williams ◽  
Emma Stevenson ◽  
Siobhan Chamberlain ◽  
Pippa Crews ◽  
...  

This study examined the effect of high carbohydrate meals with different glycemic indices (GI) on recovery of performance during prolonged intermittent high-intensity shuttle running. Seven male semi-professional soccer players (age 23 ± 2 y, body mass [BM] 73.7 ± 9.0 kg and maximal oxygen uptake 58 ± 1.0 mL · kg−1 · min−1) participated in two trials in a randomized cross-over design. On day 1, the subjects performed 90 min of an intermittent high-intensity shuttle running protocol [Loughborough Intermittent Shuttle Test (LIST)]. They then consumed a mixed high carbohydrate recovery diet (8 g/kg BM) consisting of either high (HGI) (GI: 70) or low (LGI) (GI: 35) GI foods. Twenty-two hours later (day 2) the subjects completed 75 min of the LIST (part A) followed by alternate sprinting and jogging to fatigue (part B). No differences were found between trials in time to fatigue (HGI 25.3 ± 4.0 min vs. LGI 22.9 ± 5.6 min, P = 0.649). Similarly, no differences were found between trials for sprint performance and distance covered during part B of the LIST. In conclusion, the GI of the diet during the 22 h recovery did not affect sprint and endurance performance the following day.


Sign in / Sign up

Export Citation Format

Share Document