scholarly journals GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam

2019 ◽  
Vol 11 (24) ◽  
pp. 7118 ◽  
Author(s):  
Viet-Tien Nguyen ◽  
Trong Hien Tran ◽  
Ngoc Anh Ha ◽  
Van Liem Ngo ◽  
Al-Ansari Nadhir ◽  
...  

Landslides affect properties and the lives of a large number of people in many hilly parts of Vietnam and in the world. Damages caused by landslides can be reduced by understanding distribution, nature, mechanisms and causes of landslides with the help of model studies for better planning and risk management of the area. Development of landslide susceptibility maps is one of the main steps in landslide management. In this study, the main objective is to develop GIS based hybrid computational intelligence models to generate landslide susceptibility maps of the Da Lat province, which is one of the landslide prone regions of Vietnam. Novel hybrid models of alternating decision trees (ADT) with various ensemble methods, namely bagging, dagging, MultiBoostAB, and RealAdaBoost, were developed namely B-ADT, D-ADT, MBAB-ADT, RAB-ADT, respectively. Data of 72 past landslide events was used in conjunction with 11 landslide conditioning factors (curvature, distance from geological boundaries, elevation, land use, Normalized Difference Vegetation Index (NDVI), relief amplitude, stream density, slope, lithology, weathering crust and soil) in the development and validation of the models. Area under the receiver operating characteristic (ROC) curve (AUC), and several statistical measures were applied to validate these models. Results indicated that performance of all the models was good (AUC value greater than 0.8) but B-ADT model performed the best (AUC= 0.856). Landslide susceptibility maps generated using the proposed models would be helpful to decision makers in the risk management for land use planning and infrastructure development.

Author(s):  
Sérgio C. Oliveira ◽  
José Luís Zêzere ◽  
Clémence Guillard-Gonçalves ◽  
Ricardo A. C. Garcia ◽  
Susana Pereira

Author(s):  
Z. Nikraftar ◽  
S. Rajabi-Kiasari ◽  
S. T. Seydi

Abstract. Recognizing where landslides are most likely to occur is crucial for land use planning and decision-making especially in the mountainous areas. A significant portion of northern Iran (NI) is prone to landslides due to its climatology, geological and topographical characteristics. The main objective of this study is to produce landslide susceptibility maps in NI applying three machine learning algorithms such as K-nearest neighbors (KNN), Support Vector Machines (SVM) and Random Forest (RF). Out of the total number of 1334 landslides identified in the study area, 894 (≈67%) locations were used for the landslide susceptibility maps, while the remaining 440 (≈33%) cases were utilized for the model validation. 21 landslide triggering factors including topographical, hydrological, lithological and Land cover types were extracted from the spatial database using SAGA (System for Automated Geoscientific Analyses), ArcGIS software and satellite images. Furthermore, a genetic algorithm was employed to select the most important informative features. Then, landslide susceptibility was analyzed by assessing the environmental feasibility of influential factors. The obtained results indicate that the RF model with the overall accuracy (OA) of 90.01% depicted a better performance than SVM (OA = 81.06%) and KNN (OA = 83.05%) models. The produced susceptibility maps can be productively practical for upcoming land use planning in NI.


2019 ◽  
Vol 11 (1) ◽  
pp. 708-726
Author(s):  
Zorgati Anis ◽  
Gallala Wissem ◽  
Vakhshoori Vali ◽  
Habib Smida ◽  
Gaied Mohamed Essghaier

AbstractThe Tunisian North-western region, especially Tabarka and Ain-Drahim villages, presents many landslides every year. Therefore, the landslide susceptibility mapping is essential to frame zones with high landslide susceptibility, to avoid loss of lives and properties. In this study, two bivariate statistical models: the evidential belief functions (EBF) and the weight of evidence (WoE), were used to produce landslide susceptibility maps for the study area. For this, a landslide inventory map was mapped using aerial photo, satellite image and extensive field survey. A total of 451 landslides were randomly separated into two datasets: 316 landslides (70%) for modelling and 135 landslides (30%) for validation. Then, 11 landslide conditioning factors: elevation, slope, aspect, lithology, rainfall, normalized difference vegetation index (NDVI), land cover/use, plan curvature, profile curvature, distance to faults and distance to drainage networks, were considered for modelling. The EBF and WoE models were well validated using the Area Under the Receiver Operating Characteristic (AUROC) curve with a success rate of 87.9% and 89.5%, respectively, and a predictive rate of 84.8% and 86.5%, respectively. The landslide susceptibility maps were very similar by the two models, but the WoE model is more efficient and it can be useful in future planning for the current study area.


2021 ◽  
Author(s):  
Sina Paryani ◽  
Aminreza Neshat ◽  
Biswajeet Pradhan

Abstract Landslide is a type of slope processes causing a plethora of economic damage and loss of lives worldwide every year. This study aimed to analyze spatial landslide susceptibility mapping in the Khalkhal-Tarom Basin by integrating an adaptive neuro-fuzzy inference system (ANFIS) with two multi-criteria decision-making approaches, i.e. the stepwise weight assessment ratio analysis (SWARA) and the new best-worst method (BWM) techniques. For this purpose, the first step was to prepare a landslide inventory map, which were then divided randomly by the ratio of 30/70 for model training and validation. Thirteen conditioning factors were used as slope angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, profile curvature, distance to roads, distance to streams, distance to faults, lithology, land use, rainfall and normalized difference vegetation index (NDVI). After the database was created, the BWM and the SWARA methods were utilized to determine the relationships between the sub-criteria and landslides. Finally, landslide susceptibility maps were generated by implementing ANFIS-SWARA and ANFIS-BWM hybrid models, and the ROC curve was employed to appraise the predictive accuracy of each model. The results showed that the areas under curves (AUC) for the ANFIS-SWARA and ANFIS-BWM models were 73.6% and 75% respectively, and that the novel BWM yielded more realistic relationships between effective factors and the landslides. As a result, it was more efficient in training the ANFIS. Evidently, the generated landslide susceptibility maps (LSMs) can be very efficient in managing land use and preventing the damage caused by the landslide phenomenon.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Trung-Hieu Tran ◽  
Nguyen Duc Dam ◽  
Fazal E. Jalal ◽  
Nadhir Al-Ansari ◽  
Lanh Si Ho ◽  
...  

The main objective of the study was to investigate performance of three soft computing models: Naïve Bayes (NB), Multilayer Perceptron (MLP) neural network classifier, and Alternating Decision Tree (ADT) in landslide susceptibility mapping of Pithoragarh District of Uttarakhand State, India. For this purpose, data of 91 past landslide locations and ten landslide influencing factors, namely, slope degree, curvature, aspect, land cover, slope forming materials (SFM), elevation, distance to rivers, geomorphology, overburden depth, and distance to roads were considered in the models study. Thematic maps of the Geological Survey of India (GSI), Google Earth images, and Aster Digital Elevation Model (DEM) were used for the development of landslide susceptibility maps in the Geographic Information System (GIS) environment. Landslide locations data was divided into a 70 : 30 ratio for the training (70%) and testing/validation (30%) of the three models. Standard statistical measures, namely, Positive Predicted Values (PPV), Negative Predicted Values (NPV), Sensitivity, Specificity, Mean Absolute Error (MAE), Root Mean Squire Error (RMSE), and Area under the ROC Curve (AUC) were used for the evaluation of the models. All the three soft computing models used in this study have shown good performance in the accurate development of landslide susceptibility maps, but performance of the ADT and MLP is better than NB. Therefore, these models can be used for the construction of accurate landslide susceptibility maps in other landslide-prone areas also.


2010 ◽  
Vol 10 (10) ◽  
pp. 2067-2079 ◽  
Author(s):  
J. Klimeš ◽  
V. Rios Escobar

Abstract. Fast urbanization and the morphological conditions of the Iguaná River Basin, Medellín, Colombia have forced many people to settle on landslide prone slopes as evidenced by extensive landslide induced damage. In this study we used existing disaster databases (inventories) in order to examine the spatial and temporal variability of landsliding within this watershed. The spatial variability of landsliding was examined using "expert-based" and "weighted" landslide susceptibility models. The constructed landslide susceptibility maps demonstrate consistent results irrespective of the underlying method. These show that at least 55.9% of the watershed is highly or very highly susceptible to landsliding. In addition, the temporal distribution of landsliding was analyzed and compared with climatic data. Results show that the area has a distinct bimodal rainfall distribution, and it is clear that landsliding is particularly frequent during the later rainy season between October and November. Moreover, landslides are more common during La Niña years. It is recommended that the existing landslide inventories are improved so as to be of greater use in the future land use planning of the watershed. The construction of landslide susceptibility maps based on existing data represents a significant step towards landslide mitigation in the area. Using susceptibility and hazard assessment during the developmental process should lessen the need for disaster response at a later stage.


2020 ◽  
Vol 9 (12) ◽  
pp. 696
Author(s):  
Wei Chen ◽  
Zenghui Sun ◽  
Xia Zhao ◽  
Xinxiang Lei ◽  
Ataollah Shirzadi ◽  
...  

The purpose of this study is to compare nine models, composed of certainty factors (CFs), weights of evidence (WoE), evidential belief function (EBF) and two machine learning models, namely random forest (RF) and support vector machine (SVM). In the first step, fifteen landslide conditioning factors were selected to prepare thematic maps, including slope aspect, slope angle, elevation, stream power index (SPI), sediment transport index (STI), topographic wetness index (TWI), plan curvature, profile curvature, land use, normalized difference vegetation index (NDVI), soil, lithology, rainfall, distance to rivers and distance to roads. In the second step, 152 landslides were randomly divided into two groups at a ratio of 70/30 as the training and validation datasets. In the third step, the weights of the CF, WoE and EBF models for conditioning factor were calculated separately, and the weights were used to generate the landslide susceptibility maps. The weights of each bivariate model were substituted into the RF and SVM models, respectively, and six integrated models and landslide susceptibility maps were obtained. In the fourth step, the receiver operating characteristic (ROC) curve and related parameters were used for verification and comparison, and then the success rate curve and the prediction rate curves were used for re-analysis. The comprehensive results showed that the hybrid model is superior to the bivariate model, and all nine models have excellent performance. The WoE–RF model has the highest predictive ability (AUC_T: 0.9993, AUC_P: 0.8968). The landslide susceptibility maps produced in this study can be used to manage landslide hazard and risk in Linyou County and other similar areas.


2021 ◽  
Author(s):  
Gaetano Pecoraro ◽  
Michele Calvello

<p>The importance of susceptibility maps in the initial phase of landslide hazard and risk assessment is widely recognized in the literature, since they provide to stakeholders a general overview of the location of landslide prone areas. Usually, the use of these maps is limited to support land use planning. However, many researchers have recently recognized that susceptibility maps may also be used to improve the performance and spatial resolution of landslide warning at regional scale and provide a better updating of hazard assessment over time. Indeed, landslides prediction may be difficult at regional scale only considering rainfall condition, due to the difference of the spatial and temporal distribution of rainfall and the complex diversity of the disaster-prone environment (topography, geology, and lithology). As a result, a critical issue of models solely based on rainfall thresholds may be the issuing of warnings in areas that are not prone to landslide occurrence, resulting in an excessive number of false positives. In this work, we propose a methodology aimed at combining a susceptibility map and a set of rainfall thresholds by using a matrix approach to refine the performance of an early warning model at regional scale. The main aim is the combination of rainfall thresholds (typically used to accomplish a dynamic temporal forecasting with good temporal resolution but very coarse spatial resolution), with landslide susceptibility maps (providing static spatial information about the probability of landslide occurrence with a finer resolution). The methodology presented herein could allow a better prediction of “where” and “when” landslides may occur, thus: i) allowing to define a time-dependent level of hazard associated to their possible occurrence, and ii) markedly refining the spatial resolution of warning models employed at regional scale, given that areas susceptible to landslides typically represent only a fraction of territorial warning zones.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Azemeraw Wubalem

AbstractUatzau basin in northwestern Ethiopia is one of the most landslide-prone regions, which characterized by frequent high landslide occurrences causing damages in farmlands, non-cultivated lands, properties, and loss of life. Preparing a Landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. GIS-based frequency ratio, information value, and certainty factor methods were applied. The landslide inventory map was prepared from detailed fieldwork and Google Earth imagery interpretation. Thus, 514 landslides were mapped, and out of which 359 (70%) of landslides were randomly selected keeping their spatial distribution to build landslide susceptibility models, while the remaining 155 (30%) of the landslides were used to model validation. In this study, six factors, including lithology, land use/cover, distance to stream, slope gradient, slope aspect, and slope curvature were evaluated. The effects of the landslide factor of slope instability were determined by comparing with landslide inventory raster using the GIS environment. The landslide susceptibility maps of the Uatzau area were categorized into very low, low, moderate, high and very high susceptibility classes. The landslide susceptibility maps of the three models validated by the ROC curve. The results for the area under the curve (AUC) are 88.83% for the frequency ratio model, 87.03% for certainty factor, and 84.83% of information value models, which are indicating very good accuracy in the identification of landslide susceptibility zones of a region. From these resulted maps, it is possible to recommend, the statistical methods (Frequency Ratio, Information Value, and Certainty Factor Methods) are adequate to landslide susceptibility mapping. The landslide susceptibility maps can be used for regional land use planning and landslide hazard mitigation purposes.


2020 ◽  
Author(s):  
Azemeraw Wubalem

Abstract Abstract Uatzau basin in northwestern Ethiopia is one of the most landslide-prone regions, which characterized by frequent high landslide occurrences causing damages in farmlands, non-cultivated lands, properties, and loss of life. Preparing a Landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. GIS-based frequency ratio, information value, and certainty factor methods were applied. The landslide inventory map was prepared from detailed fieldwork and Google Earth imagery interpretation. Thus, 514 landslides were mapped, and out of which 359 (70%) of landslides were randomly selected keeping their spatial distribution to build landslide susceptibility models, while the remaining 155 (30%) of the landslides were used to model validation. In this study, six factors, including lithology, land use/cover, distance to stream, slope gradient, slope aspect, and slope curvature were evaluated. The effects of the landslide factor of slope instability were determined by comparing with landslide inventory raster using the GIS environment. The landslide susceptibility maps of the Uatzau area were categorized into very low, low, moderate, high and very high susceptibility classes. The landslide susceptibility maps of the three models validated by the ROC curve. The results for the area under the curve (AUC) are 88.83% for the frequency ratio model, 87.03% for certainty factor, and 84.83% of information value models, which are indicating very good accuracy in the identification of landslide susceptibility zones of a region. From these resulted maps, it is possible to recommend, the statistical methods (Frequency Ratio, Information Value, and Certainty Factor Methods) are adequate to landslide susceptibility mapping. The landslide susceptibility maps can be used for regional land use planning and landslide hazard mitigation purposes. Keywords: landslide; susceptibility; Geographic Information System (GIS); certainty factor; frequency ratio; information value; Ethiopia.


Sign in / Sign up

Export Citation Format

Share Document