scholarly journals Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides

2020 ◽  
Vol 9 (12) ◽  
pp. 696
Author(s):  
Wei Chen ◽  
Zenghui Sun ◽  
Xia Zhao ◽  
Xinxiang Lei ◽  
Ataollah Shirzadi ◽  
...  

The purpose of this study is to compare nine models, composed of certainty factors (CFs), weights of evidence (WoE), evidential belief function (EBF) and two machine learning models, namely random forest (RF) and support vector machine (SVM). In the first step, fifteen landslide conditioning factors were selected to prepare thematic maps, including slope aspect, slope angle, elevation, stream power index (SPI), sediment transport index (STI), topographic wetness index (TWI), plan curvature, profile curvature, land use, normalized difference vegetation index (NDVI), soil, lithology, rainfall, distance to rivers and distance to roads. In the second step, 152 landslides were randomly divided into two groups at a ratio of 70/30 as the training and validation datasets. In the third step, the weights of the CF, WoE and EBF models for conditioning factor were calculated separately, and the weights were used to generate the landslide susceptibility maps. The weights of each bivariate model were substituted into the RF and SVM models, respectively, and six integrated models and landslide susceptibility maps were obtained. In the fourth step, the receiver operating characteristic (ROC) curve and related parameters were used for verification and comparison, and then the success rate curve and the prediction rate curves were used for re-analysis. The comprehensive results showed that the hybrid model is superior to the bivariate model, and all nine models have excellent performance. The WoE–RF model has the highest predictive ability (AUC_T: 0.9993, AUC_P: 0.8968). The landslide susceptibility maps produced in this study can be used to manage landslide hazard and risk in Linyou County and other similar areas.

2021 ◽  
Author(s):  
Xia Zhao ◽  
Wei Chen ◽  
Tao Li ◽  
Faming Huang ◽  
Chaohong Peng ◽  
...  

Abstract The precision of landslide susceptibility assessment has always been the focus of landslide spatial prediction research. It can be considered as the possibility of landslide disaster under the action of human activities or natural factors, or both of them. For the further exploration of the mechanism of this process, Muchuan County was proposed as the study area, and four well-known machine learning models, namely rotation forest (RF), J48 decision tree (J48), alternating decision tree (ADTree) and random forest (RaF), and their ensembles (RF-J48, RF-ADTree and RF-RaF) were introduced to explore the mechanism. These models are established by twelve landslide conditioning factors, which are selected based to the local special geological environment conditions and previous related researches, including plan curvature, profile curvature, slope angle, slope aspect, elevation, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), soil, lithology, distance to roads, and distance to rivers, as well as training (195 landslides) and validation (84 landslides) datasets were developed. The landslide prediction performance of the above conditioning factors was analyzed through the correlation attribute evaluation (CAE) model. Then, through the landslide susceptibility maps made by the above six different models, the Jenks natural breaks method is used to divide the landslide susceptibility into five grades, which are very low, low, moderate, high, and very high. In addition, the accuracy of the above six landslide susceptibility maps was verified by implementing the relative operating characteristic curve (ROC) and the area under the ROC (AUC). That is, the capabilities of the above six models are compared and verified in the landslide spatial prediction. Finally, the obtained results show that elevation, lithology and TWI are the three most principal landslide conditioning factors in this research. The RF-RaF and RaF models in the training dataset performed best, with the AUC value of 0.75, while the RF-ADTree model (0.74), RF-J48 model (0.74), ADTree model (0.71) and J48 model (0.70) performed poorly. Meanwhile, similar results also emerge from the validation dataset, in which the RF-RaF model acquired the best performance (0.82) and the rest are the RF-ADTree model (0.80), RaF model (0.79), RF-J48 model (0.77), ADTree model (0.76) and J48 model (0.71). Last but by no means the least, the results can provide scientific references for local natural resources departments.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 884 ◽  
Author(s):  
Tingyu Zhang ◽  
Ling Han ◽  
Wei Chen ◽  
Himan Shahabi

The main purpose of the present study is to apply three classification models, namely, the index of entropy (IOE) model, the logistic regression (LR) model, and the support vector machine (SVM) model by radial basis function (RBF), to produce landslide susceptibility maps for the Fugu County of Shaanxi Province, China. Firstly, landslide locations were extracted from field investigation and aerial photographs, and a total of 194 landslide polygons were transformed into points to produce a landslide inventory map. Secondly, the landslide points were randomly split into two groups (70/30) for training and validation purposes, respectively. Then, 10 landslide explanatory variables, such as slope aspect, slope angle, altitude, lithology, mean annual precipitation, distance to roads, distance to rivers, distance to faults, land use, and normalized difference vegetation index (NDVI), were selected and the potential multicollinearity problems between these factors were detected by the Pearson Correlation Coefficient (PCC), the variance inflation factor (VIF), and tolerance (TOL). Subsequently, the landslide susceptibility maps for the study region were obtained using the IOE model, the LR–IOE, and the SVM–IOE model. Finally, the performance of these three models was verified and compared using the receiver operating characteristics (ROC) curve. The success rate results showed that the LR–IOE model has the highest accuracy (90.11%), followed by the IOE model (87.43%) and the SVM–IOE model (86.53%). Similarly, the AUC values also showed that the prediction accuracy expresses a similar result, with the LR–IOE model having the highest accuracy (81.84%), followed by the IOE model (76.86%) and the SVM–IOE model (76.61%). Thus, the landslide susceptibility map (LSM) for the study region can provide an effective reference for the Fugu County government to properly address land planning and mitigate landslide risk.


2019 ◽  
Vol 11 (1) ◽  
pp. 708-726
Author(s):  
Zorgati Anis ◽  
Gallala Wissem ◽  
Vakhshoori Vali ◽  
Habib Smida ◽  
Gaied Mohamed Essghaier

AbstractThe Tunisian North-western region, especially Tabarka and Ain-Drahim villages, presents many landslides every year. Therefore, the landslide susceptibility mapping is essential to frame zones with high landslide susceptibility, to avoid loss of lives and properties. In this study, two bivariate statistical models: the evidential belief functions (EBF) and the weight of evidence (WoE), were used to produce landslide susceptibility maps for the study area. For this, a landslide inventory map was mapped using aerial photo, satellite image and extensive field survey. A total of 451 landslides were randomly separated into two datasets: 316 landslides (70%) for modelling and 135 landslides (30%) for validation. Then, 11 landslide conditioning factors: elevation, slope, aspect, lithology, rainfall, normalized difference vegetation index (NDVI), land cover/use, plan curvature, profile curvature, distance to faults and distance to drainage networks, were considered for modelling. The EBF and WoE models were well validated using the Area Under the Receiver Operating Characteristic (AUROC) curve with a success rate of 87.9% and 89.5%, respectively, and a predictive rate of 84.8% and 86.5%, respectively. The landslide susceptibility maps were very similar by the two models, but the WoE model is more efficient and it can be useful in future planning for the current study area.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 325 ◽  
Author(s):  
Guirong Wang ◽  
Xinxiang Lei ◽  
Wei Chen ◽  
Himan Shahabi ◽  
Ataollah Shirzadi

In this study, hybrid integration of MultiBoosting based on two artificial intelligence methods (the radial basis function network (RBFN) and credal decision tree (CDT) models) and geographic information systems (GIS) were used to establish landslide susceptibility maps, which were used to evaluate landslide susceptibility in Nanchuan County, China. First, the landslide inventory map was generated based on previous research results combined with GIS and aerial photos. Then, 298 landslides were identified, and the established dataset was divided into a training dataset (70%, 209 landslides) and a validation dataset (30%, 89 landslides) with ensured randomness, fairness, and symmetry of data segmentation. Sixteen landslide conditioning factors (altitude, profile curvature, plan curvature, slope aspect, slope angle, stream power index (SPI), topographical wetness index (TWI), sediment transport index (STI), distance to rivers, distance to roads, distance to faults, rainfall, NDVI, soil, land use, and lithology) were identified in the study area. Subsequently, the CDT, RBFN, and their ensembles with MultiBoosting (MCDT and MRBFN) were used in ArcGIS to generate the landslide susceptibility maps. The performances of the four landslide susceptibility maps were compared and verified based on the area under the curve (AUC). Finally, the verification results of the AUC evaluation show that the landslide susceptibility mapping generated by the MCDT model had the best performance.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 372 ◽  
Author(s):  
Zhongjun Ma ◽  
Shengwu Qin ◽  
Chen Cao ◽  
Jiangfeng Lv ◽  
Guangjie Li ◽  
...  

Landslides are one of the most frequent geomorphic hazards, and they often result in the loss of property and human life in the Changbai Mountain area (CMA), Northeast China. The objective of this study was to produce and compare landslide susceptibility maps for the CMA using an information content model (ICM) with three knowledge-driven methods (the artificial hierarchy process with the ICM (AHP-ICM), the entropy weight method with the ICM (EWM-ICM), and the rough set with the ICM (RS-ICM)) and to explore the influence of different knowledge-driven methods for a series of parameters on the accuracy of landslide susceptibility mapping (LSM). In this research, the landslide inventory data (145 landslides) were randomly divided into a training dataset: 70% (81 landslides) were used for training the models and 30% (35 landslides) were used for validation. In addition, 13 layers of landslide conditioning factors, namely, altitude, slope gradient, slope aspect, lithology, distance to faults, distance to roads, distance to rivers, annual precipitation, land type, normalized difference vegetation index (NDVI), topographic wetness index (TWI), plan curvature, and profile curvature, were taken as independent, causal predictors. Landslide susceptibility maps were developed using the ICM, RS-ICM, AHP-ICM, and EWM-ICM, in which weights were assigned to every conditioning factor. The resultant susceptibility was validated using the area under the ROC curve (AUC) method. The success accuracies of the landslide susceptibility maps produced by the ICM, RS-ICM, AHP-ICM, and EWM-ICM methods were 0.931, 0.939, 0.912, and 0.883, respectively, with prediction accuracy rates of 0.926, 0.927, 0.917, and 0.878 for the ICM, RS-ICM, AHP-ICM, and EWM-ICM, respectively. Hence, it can be concluded that the four models used in this study gave close results, with the RS-ICM exhibiting the best performance in landslide susceptibility mapping.


2020 ◽  
Vol 12 (23) ◽  
pp. 3854 ◽  
Author(s):  
Wei Chen ◽  
Yunzhi Chen ◽  
Paraskevas Tsangaratos ◽  
Ioanna Ilia ◽  
Xiaojing Wang

The main objective of the present study is to introduce a novel predictive model that combines evolutionary algorithms and machine learning (ML) models, so as to construct a landslide susceptibility map. Genetic algorithms (GA) are used as a feature selection method, whereas the particle swarm optimization (PSO) method is used to optimize the structural parameters of two ML models, support vector machines (SVM) and artificial neural network (ANN). A well-defined spatial database, which included 335 landslides and twelve landslide-related variables (elevation, slope angle, slope aspect, curvature, plan curvature, profile curvature, topographic wetness index, stream power index, distance to faults, distance to river, lithology, and hydrological cover) are considered for the analysis, in the Achaia Regional Unit located in Northern Peloponnese, Greece. The outcome of the study illustrates that both ML models have an excellent performance, with the SVM model achieving the highest learning accuracy (0.977 area under the receiver operating characteristic curve value (AUC)), followed by the ANN model (0.969). However, the ANN model shows the highest prediction accuracy (0.800 AUC), followed by the SVM (0.750 AUC) model. Overall, the proposed ML models highlights the necessity of feature selection and tuning procedures via evolutionary optimization algorithms and that such approaches could be successfully used for landslide susceptibility mapping as an alternative investigation tool.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4436 ◽  
Author(s):  
Liming Xiao ◽  
Yonghong Zhang ◽  
Gongzhuang Peng

The China-Nepal Highway is a vital land route in the Kush-Himalayan region. The occurrence of mountain hazards in this area is a matter of serious concern. Thus, it is of great importance to perform hazard assessments in a more accurate and real-time way. Based on temporal and spatial sensor data, this study tries to use data-driven algorithms to predict landslide susceptibility. Ten landslide instability factors were prepared, including elevation, slope angle, slope aspect, plan curvature, vegetation index, built-up index, stream power, lithology, precipitation intensity, and cumulative precipitation index. Four machine learning algorithms, namely decision tree (DT), support vector machines (SVM), Back Propagation neural network (BPNN), and Long Short Term Memory (LSTM) are implemented, and their final prediction accuracies are compared. The experimental results showed that the prediction accuracies of BPNN, SVM, DT, and LSTM in the test areas are 62.0%, 72.9%, 60.4%, and 81.2%, respectively. LSTM outperformed the other three models due to its capability to learn time series with long temporal dependencies. It indicates that the dynamic change course of geological and geographic parameters is an important indicator in reflecting landslide susceptibility.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4893 ◽  
Author(s):  
Hejar Shahabi ◽  
Ben Jarihani ◽  
Sepideh Tavakkoli Piralilou ◽  
David Chittleborough ◽  
Mohammadtaghi Avand ◽  
...  

Gully erosion is a dominant source of sediment and particulates to the Great Barrier Reef (GBR) World Heritage area. We selected the Bowen catchment, a tributary of the Burdekin Basin, as our area of study; the region is associated with a high density of gully networks. We aimed to use a semi-automated object-based gully networks detection process using a combination of multi-source and multi-scale remote sensing and ground-based data. An advanced approach was employed by integrating geographic object-based image analysis (GEOBIA) with current machine learning (ML) models. These included artificial neural networks (ANN), support vector machines (SVM), and random forests (RF), and an ensemble ML model of stacking to deal with the spatial scaling problem in gully networks detection. Spectral indices such as the normalized difference vegetation index (NDVI) and topographic conditioning factors, such as elevation, slope, aspect, topographic wetness index (TWI), slope length (SL), and curvature, were generated from Sentinel 2A images and the ALOS 12-m digital elevation model (DEM), respectively. For image segmentation, the ESP2 tool was used to obtain three optimal scale factors. On using object pureness index (OPI), object matching index (OMI), and object fitness index (OFI), the accuracy of each scale in image segmentation was evaluated. The scale parameter of 45 with OFI of 0.94, which is a combination of OPI and OMI indices, proved to be the optimal scale parameter for image segmentation. Furthermore, segmented objects based on scale 45 were overlaid with 70% and 30% of a prepared gully inventory map to select the ML models’ training and testing objects, respectively. The quantitative accuracy assessment methods of Precision, Recall, and an F1 measure were used to evaluate the model’s performance. Integration of GEOBIA with the stacking model using a scale of 45 resulted in the highest accuracy in detection of gully networks with an F1 measure value of 0.89. Here, we conclude that the adoption of optimal scale object definition in the GEOBIA and application of the ensemble stacking of ML models resulted in higher accuracy in the detection of gully networks.


2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.


2019 ◽  
Vol 11 (24) ◽  
pp. 7118 ◽  
Author(s):  
Viet-Tien Nguyen ◽  
Trong Hien Tran ◽  
Ngoc Anh Ha ◽  
Van Liem Ngo ◽  
Al-Ansari Nadhir ◽  
...  

Landslides affect properties and the lives of a large number of people in many hilly parts of Vietnam and in the world. Damages caused by landslides can be reduced by understanding distribution, nature, mechanisms and causes of landslides with the help of model studies for better planning and risk management of the area. Development of landslide susceptibility maps is one of the main steps in landslide management. In this study, the main objective is to develop GIS based hybrid computational intelligence models to generate landslide susceptibility maps of the Da Lat province, which is one of the landslide prone regions of Vietnam. Novel hybrid models of alternating decision trees (ADT) with various ensemble methods, namely bagging, dagging, MultiBoostAB, and RealAdaBoost, were developed namely B-ADT, D-ADT, MBAB-ADT, RAB-ADT, respectively. Data of 72 past landslide events was used in conjunction with 11 landslide conditioning factors (curvature, distance from geological boundaries, elevation, land use, Normalized Difference Vegetation Index (NDVI), relief amplitude, stream density, slope, lithology, weathering crust and soil) in the development and validation of the models. Area under the receiver operating characteristic (ROC) curve (AUC), and several statistical measures were applied to validate these models. Results indicated that performance of all the models was good (AUC value greater than 0.8) but B-ADT model performed the best (AUC= 0.856). Landslide susceptibility maps generated using the proposed models would be helpful to decision makers in the risk management for land use planning and infrastructure development.


Sign in / Sign up

Export Citation Format

Share Document