scholarly journals Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions

2020 ◽  
Vol 12 (3) ◽  
pp. 964 ◽  
Author(s):  
Yingzhuang Guo ◽  
Xiaoyan Wang ◽  
Lili Zhou ◽  
Charles Melching ◽  
Zeqi Li

The spatiotemporal distribution of critical source areas (CSAs) will change with hydrological conditions. In this study, the CSAs of nitrogen load under different hydrological conditions in the Chaohe River watershed were identified using the cumulative pollution load curve method determined from the nitrogen pollution simulated using the Soil and Water Assessment Tool (SWAT) model. The results showed that: (1) The order of factors impacting nitrogen load intensity is as follows: fertilization intensity, rainfall, runoff, land use type, slope type, and soil type. (2) The primary and secondary CSAs are concentrated in the upper and lower areas of the watershed, where cultivated land (8.36%) and grassland (52.55%) are more abundant. The potential pollution source areas are concentrated in the upper and middle areas of the watershed, where cultivated land (6.99%), grassland (42.37%), and forest land (48.18%) are evenly distributed. The low-risk source areas are concentrated in the middle and left bank of the watershed, where forest land (67.65%) is dominant and the vegetation coverage is highest. The research results have significance for improving the accuracy of the implementation of best management practices, and can provide a reference for the formulation of drinking water protection policies for Beijing.

1993 ◽  
Vol 28 (3-5) ◽  
pp. 241-259 ◽  
Author(s):  
R. T. Bannerman ◽  
D. W. Owens ◽  
R. B. Dodds ◽  
N. J. Hornewer

Rainfall runoff samples were collected from streets, parking lots, roofs, driveways, and lawns. These five source areas are located in residential, commercial, and industrial land uses in Madison, Wisconsin. Solids, phosphorus, and heavy metals loads were determined for all the source areas using measured concentrations and runoff volumes estimated by the Source Load and Management Model. Source areas with relatively large contaminant loads were identified as critical source areas for each land use. Streets are critical source areas for most contaminants in all the land uses. Parking lots are critical in the commercial and industrial land uses. Lawns and driveways contribute large phosphorus loads in the residential land use. Roofs produce significant zinc loads in the commercial and industrial land uses. Identification of critical source areas could reduce the amount of area needing best-management practices in two areas of Madison, Wisconsin. Targeting best-management practices to 14% of the residential area and 40% of the industrial area could significantly reduce contaminant loads by up to 75%.


Author(s):  
Shu Li ◽  
Jiake Li ◽  
Gairui Hao ◽  
Yajiao Li

Abstract Taking the Hanjiang River basin with Ankang hydrological station as the control section as the study area, the Soil and Water Assessment Tool (SWAT) model is used to identify the spatial and temporal distribution of non-point source (NPS) pollution and determine the critical source areas (CSA). Then we set up 11 best management practices (BMPs) in the CSA and evaluate their environmental and comprehensive benefits. The results show that TN and TP loads in flood season are significantly higher than that in non-flood season. The distribution of loss intensity of TN and TP load has a strong correlation with runoff and sediment erosion intensity, respectively. Among the 8 individual BMPs, the reduction rates of stubble coverage, grassed waterway and returning farmland to forest land are relatively high, and the comprehensive attribute value Z of stubble coverage is the highest. Among the 3 combined BMPs, the reduction rate of ‘stubble coverage + grassed waterway + returning farmland to forest land (>25°)’ is the highest and the Z value is the largest. Overall, the BMPs such as stubble coverage, grassed waterway, and returning farmland to forest land can be adopted alternately to control NPS pollution in the Hanjiang river basin.


2020 ◽  
Author(s):  
Natalia Uribe ◽  
Gerald A Corzo P

<p>Spatio temporal visualization of soil critical sources areas to assess the dynamics of source pollution in agricultural management practices</p><p>always changes aim at the reduction of nutrient pollution. Critical identification of areas that are the sources of pollution is crucial for identifying which practices provide the most substantial contamination. The dynamics of agricultural practices are complex and the precise determination of pollution concentration requires a comprehensive model. In this research, we present the results of analysing via a new visualisation technique were the critical source areas using a spatiotemporal methodology that allows for a georeferenced identification of changes. The proposed method in this research used a radial diagram to evaluate the changes in regions of pollution and makes a radial diagram formulation of intensities, location and frequency. For this location and intensity identification, a clustering process, using the Non-contiguous drought areas method and the Contrigous drought area method. This clustering groups by first mapping in one dimension the threshold that defines a change in the state of the CSA, and then groups if by its neighbours and soil characteristics. To obtain a spatially distributed data, a SWAT model was set up for two types of crops, mainly potato and tomato tree, aside, we added also Kikuyu grass as it is one of the most important in the region. The simulation period for our experiment was in an area of 103434 Ha, using daily data from 1995 to 2015.  Two steps calibration was done, first with streamflow and second with an analysis of monthly nutrients. Results show a definite change in location, which will imply that a significant error could be present if the spatiotemporal relation is not analysed. The current work is part of a PhD thesis and the partial results presented here contribute to a broader formulation of the optimisation of agricultural practices to reduce the impact of the Critical Source Areas in nutrients pollution. </p><p> </p>


Environments ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 20 ◽  
Author(s):  
Hadi Babaei ◽  
Mohammad Nazari-Sharabian ◽  
Moses Karakouzian ◽  
Sajjad Ahmad

Best Management Practices (BMPs) are commonly used to control pollution in the river basins. Prioritization of BMPs helps improve the efficiency and effectiveness of pollution reduction, especially in Critical Source Areas (CSAs) that produce the highest pollution loads. Recently, the Dez River in Khuzestan, Iran, has become highly eutrophic from the overuse of fertilizers and pesticides. In this basin, dry and irrigated farming produce 77.34% and 6.3% of the Total Nitrogen (TN) load, and 83.56% and 4.3% of the Total Phosphorus (TP) load, respectively. In addition, residential, pasture, and forest land uses together account for 16.36% of the TN and 12.14% of the TP load in this area. The Soil and Water Assessment Tool (SWAT) was implemented to model the Dez River basin and evaluate the applicability of several BMPs, including point source elimination, filter strips, livestock grazing, and river channel management, in reducing the entry of pollution loads to the river. Sensitivity analysis and calibration/validation of the model was performed using the SUFI-2 algorithm in the SWAT Calibration Uncertainties Program (SWAT-CUP). The CSAs were identified using individual (sediment, TN, TP) and combined indices, based on the amount of pollution produced. Among the BMPs implemented, the 10 m filter strip was most effective in reducing TN load (42.61%), and TP load (39.57%).


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 468 ◽  
Author(s):  
Ramesh P. Rudra ◽  
Balew A. Mekonnen ◽  
Rituraj Shukla ◽  
Narayan Kumar Shrestha ◽  
Pradeep K. Goel ◽  
...  

Non-point source (NPS) pollution is an important problem that has been threatening freshwater resources throughout the world. Best Management Practices (BMPs) can reduce NPS pollution delivery to receiving waters. For economic reasons, BMPs should be placed at critical source areas (CSAs), which are the areas contributing most of the NPS pollution. The CSAs are the areas in a watershed where source coincides with transport factors, such as runoff, erosion, subsurface flow, and channel processes. Methods ranging from simple index-based to detailed hydrologic and water quality (HWQ) models are being used to identify CSAs. However, application of these methods for Canadian watersheds remains challenging due to the diversified hydrological conditions, which are not fully incorporated into most existing methods. The aim of this work is to review potential methods and challenges in identifying CSAs under Canadian conditions. As such, this study: (a) reviews different methods for identifying CSAs; (b) discusses challenges and the current state of CSA identification; and (c) highlights future research directions to address limitations of currently available methods. It appears that applications of both simple index-based methods and detailed HWQ models to determine CSAs are limited in Canadian conditions. As no single method/model is perfect, it is recommended to develop a ‘Toolbox’ that can host a variety of methods to identify CSAs so as to allow flexibility to the end users on the choice of the methods.


Author(s):  
Hadi Babaei ◽  
Mohammad Nazari-Sharabian ◽  
Moses Karakouzian ◽  
Sajjad Ahmad

Best management practices (BMPs) are a way to control pollution in river basins. Prioritization of BMPs helps improve efficiency and effectiveness of pollution reduction, especially in critical source areas (CSAs) that produce the highest pollution loads. Recently, the Dez River, Khuzestan, Iran, has become highly eutrophic from overuse of fertilizers and pesticides. Dry and irrigated farming produce 77.34% and 6.3% of the total nitrogen (TN) load, and 83.56% and 4.3% of the total phosphorus (TP) load in this basin, respectively. Residential, pasture, and forest land uses account for 16.36% of the TN and 12.14% of the TP load cumulatively. In this study, the Soil and Water Assessment Tool (SWAT) was implemented to model the Dez River basin, and evaluate the applicability of several BMPs including point source elimination, filter strips, livestock grazing, and river channel management, in reducing the entry of pollution loads to the river. Sensitivity analysis and calibration/validation of the model was performed using the SUFI-2 algorithm in the SWAT Calibration Uncertainties Program (SWAT-CUP). CSAs were identified using individual (sediment, TN, TP) and combined indices, based on the amount of pollution produced. Among the BMPs implemented, filter strips were most effective in reducing TN loads (59%), and, increasing the D50 of particles for river channel management was most effective in reducing TP loads (49%).


Author(s):  
Hadi Babaei ◽  
Mohammad Nazari-Sharabian ◽  
Moses Karakouzian ◽  
Sajjad Ahmad

Best Management Practices (BMPs) are commonly used to control pollution in the river basins. Prioritization of BMPs helps improve the efficiency and effectiveness of pollution reduction, especially in Critical Source Areas (CSAs) that produce the highest pollution loads. Recently, the Dez River in Khuzestan, Iran, has become highly eutrophic from the overuse of fertilizers and pesticides. In this basin, dry and irrigated farming produce 77.34% and 6.3% of the Total Nitrogen (TN) load, and 83.56% and 4.3% of the Total Phosphorus (TP) load, respectively. In addition, residential, pasture, and forest land uses together account for 16.36% of the TN and 12.14% of the TP load in this area. The Soil and Water Assessment Tool (SWAT) was implemented to model the Dez River basin and evaluate the applicability of several BMPs, including point source elimination, filter strips, livestock grazing, and river channel management, in reducing the entry of pollution loads to the river. Sensitivity analysis and calibration/validation of the model was performed using the SUFI-2 algorithm in the SWAT Calibration Uncertainties Program (SWAT-CUP). The CSAs were identified using individual (sediment, TN, TP) and combined indices, based on the amount of pollution produced. Among the BMPs implemented, the 10 m filter strip was most effective in reducing TN load (42.61%), and TP load (39.57%).


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


Sign in / Sign up

Export Citation Format

Share Document