scholarly journals Environmental and Economic Sustainability of Table Grape Production in Italy

2020 ◽  
Vol 12 (9) ◽  
pp. 3670 ◽  
Author(s):  
Luigi Roselli ◽  
Arturo Casieri ◽  
Bernardo Corrado de Gennaro ◽  
Ruggiero Sardaro ◽  
Giovanni Russo

In recent years, the environmental sustainability of agri-food systems has become a crucial issue. Agri-food firms are increasingly concerned with the implementation of viable environmentally friendly production processes. The environmental impacts of the table grape sector, as well as other fresh and not transformed food products, involve mainly the farming phase rather than the subsequent conditioning, transportation, packaging, and distribution phases. The purpose of this study was to assess the environmental impacts and the economic viability of three table grapes production models (i.e., early harvesting, normal harvesting, and delayed harvesting), based on the Italian tendone system, during the entire life cycle. The environmental impact analysis was performed using the life cycle assessment (LCA) approach, while the economic analysis was performed using the life cycle costing (LCC) approach. The results show that the early and the delayed production models generated the highest environmental burdens, but also the highest economic returns, compared to the normal harvesting production model. The main determinants of the environmental impacts and economic returns are discussed and some practical recommendations are given to improve the sustainability of all the surveyed production models, so to converge public and private interests.

2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ian Vázquez-Rowe ◽  
Diego Iribarren

Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4998
Author(s):  
Vasileios Ntouros ◽  
Ioannis Kousis ◽  
Dimitra Papadaki ◽  
Anna Laura Pisello ◽  
Margarita Niki Assimakopoulos

In the last twenty years, research activity around the environmental applications of metal–organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The findings revealed that the main environmental weak points identified during production were: (a) the use of dimethylformamide (DMF) and methanol (MeOH) as substances impacting environmental sustainability, which accounted for more than 85% of the overall environmental impacts in those synthetic routes where they were utilized as solvents and as cleaning agents at the same time; (b) the electricity consumption, especially due to the Greek energy mix which is fossil-fuel dependent, and accounted for up to 13% of the overall environmental impacts in some synthetic routes. Nonetheless, for the optimization of the impacts provided by the energy use, suggestions are made based on the use of alternative, cleaner renewable energy sources, which (for the case of wind energy) will decrease the impacts by up to 2%.


2019 ◽  
Vol 121 (8) ◽  
pp. 1801-1812 ◽  
Author(s):  
Giuliana Vinci ◽  
Mattia Rapa

Purpose Nowadays, hydroponic cultivation represents a widely used agricultural methodology. The purpose of this paper is to study comparatively on hydroponic substrates. This study is highlighting the best substrate to be involved in hydroponic systems, considering its costs and its sustainability. Design/methodology/approach Seven substrates were evaluated: rock wool, perlite, vermiculite, peat, coconut fibres, bark and sand. Life cycle assessment (life cycle inventory, life cycle impact assessment (LCIA) and life cycle costing (LCC)) was applied to evaluate the environmental and economic impact. Through the results of the impacts, the carbon footprint of each substrate was calculated. Findings Perlite is the most impacting substrate, as highlighted by LCIA, followed by rock wool and vermiculite. The most sustainable ones, instead, are sand and bark. Sand has the lower carbon footprint (0.0121 kg CO2 eq.); instead, bark carbon footprint results in one of the highest (1.1197 kg CO2 eq.), while in the total impact analysis this substrate seems to be highly sustainable. Also for perlite the two results are in disagreement: it has a high total impact but very low carbon footprint (0.0209 kg CO2 eq.) compared to the other substrates. From the LCC analysis it appears that peat is the most expensive substrate (€6.67/1,000 cm3), while sand is the cheaper one (€0.26/1,000 cm3). Originality/value The LCA and carbon footprint methodologies were applied to a growing agriculture practice. This study has highlighted the economic and environmental sustainability of seven substrates examined. This analysis has shown that sand can be the best substrate to be involved in hydroponic systems by considering its costs and its sustainability.


2021 ◽  
pp. 0734242X2110179
Author(s):  
Daniela Camana ◽  
Sara Toniolo ◽  
Alessandro Manzardo ◽  
Mirco Piron ◽  
Antonio Scipioni

Life cycle assessment (LCA) and related tools are commonly used to evaluate the potential environmental impacts of waste treatment scenarios. This manuscript presents a mini-review of studies published over the last 10 years in Italy and aims to investigate how life cycle thinking tools are applied to assess the environmental sustainability of local-level waste policies. Results reveal that different waste flows, technologies and policies have been investigated independently and in varying detail. Review suggests that boundary selection significantly affects LCA results; integration of different waste systems is therefore crucial to avoid spatial or temporal shifts of environmental impacts. Moreover, the description of methodological characteristics, limitations and transversal aspects of Italian waste management studies allows various stakeholders to assess the reliability of past and future research for waste policy planning and rebound effects prevention. This review also highlights the need to define minimum requirements of transparency and ease of reporting of the studies to private and public stakeholders. Finally, the paper investigates whether using both the organisational LCA and the life cycle sustainability approach for the overall waste management process may be useful to develop a standard method to address multi-functionalities and multiple sites.


Environments ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 23
Author(s):  
Spyros Foteinis ◽  
Maria Hatzisymeon ◽  
Alistair G. L. Borthwick ◽  
Efthalia Chatzisymeon

We report a comparative environmental study of organic and conventional open-field eggplant cultivation systems under Mediterranean (northern Greece) climatic conditions. Actual life cycle inventory (LCI) data were collected from local farm systems. Using life cycle assessment (LCA), organic eggplant cultivation exhibited better environmental performance per unit area (24.15% lower total environmental footprint compared to conventional cultivation), but conventional cultivation performed better per unit of mass (28.10% lower total environmental footprint compared to organic cultivation). The conventional system attained higher scores in eutrophication (up to 37.12%) and ecotoxicity (up to 83.00%) midpoint impact categories, due to the use of chemical fertilizer and pesticide. This highlights the need for spatially explicit LCA that accounts for local environmental impacts at the local scale. For both cultivation systems, the main environmental hotspot was groundwater abstraction for irrigation owing to its infrastructure (drip irrigation pipes and pump) and electricity consumption from the fossil fuel-dependent energy mix in Greece. Excessive addition of soil fertilizer greatly affected the environmental sustainability of both systems, especially conventional cultivation, indicating an urgent need for fertilizer guidelines that enhance environmentally sustainable agricultural practice worldwide. Results were sensitive to lower marketable fruit yield, with the organic system performing better in terms of environmental relevance with respect to maximum yield. When renewable energy sources (RES) were used to drive irrigation, both systems exhibited reductions in total environmental footprint, suggesting that RES could help decarbonise the agricultural sector. Finally, eggplant transportation greatly affected the environmental sustainability of both cultivation systems, confirming that local production and consumption are important perquisites for environmental sustainability of agricultural products.


2019 ◽  
Vol 21 (15) ◽  
pp. 4100-4114 ◽  
Author(s):  
Pelayo García-Gutiérrez ◽  
Rosa M. Cuéllar-Franca ◽  
Dan Reed ◽  
George Dowson ◽  
Peter Styring ◽  
...  

The life cycle environmental impacts of cellulose-supported solid ionic liquids are estimated in comparison with a range of other CO2 sorbents.


Sign in / Sign up

Export Citation Format

Share Document